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Le premier exercice étudie une classe de courbes sur les surfaces et dans le second, on calcule l’intégrale
de la courbure gaussienne du tore de révolution. On finit avec un exercice de révision sur la courbure
des courbes planes.

Exercice 14.1. Une courbe réguliére v : I — S tracée sur une surface réguliére coorientée S C R3
de classe C? s’appelle une ligne asymptotique® si elle est de classe C? et son vecteur de courbure est
tangent a la surface pour tout t € I.

Prouver que les affirmations suivantes sont équivalentes:
La courbe = est une ligne asymptotique de S.

(a)

(b) La courbure normale k,, de 7 est identiquement nulle.
) h(3(t),%(t)) = 0 pour tout t € I, out h est la seconde forme fondamentale de S.
)

En tout point de la courbe, le vecteur binormal de ~ est égale, au signe prés, au vecteur de
coorientation de la surface.

(e) Le plan osculateur a v coincide avec le plan affine tangent en S en chaque point de 7.
(Pour les points (d) et (e) on suppose que la courbe est réguliére au sens de Frenet).

Solution 14.1. Nous allons d’abord démontrer les équivalences (a) < (b) < (c). Puis, sous 'hypothése
de régularité au sens de Frenet, les implications (a) = (d) = (e).

(a) < (b) : La courbure normale de « est définie par k,(t) = (K(t),v(t)). Donc K, (t) L v(t) si et
seulement si &, (t) = 0.

(b) < (c) : Cette équivalence se déduit de la formule suivante, vue au cours, et qui dit que la courbure
normale de v est donnée par
h(¥(t), 4(t))

15 ()12

Rappelons la preuve de cette formule : On a (v(y(t)),5(¢)) = 0 pour tout ¢ € I, donc

kn(t) =

(u(0),A4(0) + (D), 3(0)) = 0

En utilisant la formule de I'accélération 4(t) = V(1)K (t) + V(t)T,(t), on voit que

w(y(),3(1) = V2O r(4(1), Ky () + V() {r(4(2)), T4 (1))

Le dernier terme est nul, donc

D’autre part
<%V(7(t))ﬂ(t)> = (dv(y(1)),¥(t)) = (L(v(2),¥(t)) = —=h(3(t),¥(t)).

!La terminologie est justifiée par le fait que le vecteur vitesse d’une ligne de courbure est en direction d’une asymptote
de l'indicatrice de Dupin, qui est l'ensemble des vecteurs v € T,S tels que |h(v,v)] = 1 (mais ceci n’influence pas
lexercice).



Des trois précédentes identités, on déduit que

151K () = R(3 (1), 5(2))-

On a donc démontré (a) < (b) < (c) pour toute courbe de classe C? sur la surface S.

On suppose maintenant que la courbe v est réguliére au sens de Frenet, et on note {T,IN, B} le repére
de Frenet. Sous cette hypothése on montre (a) = (d) = (e).

(a) = (d) : Par hypothése N = 1K est tangent a la surface S. Par conséquent N = +p ott g =v x T
est le troisiéme vecteur du repére de Darboux. On a donc

B=TXxN=4£Tx py==v.

N

(d) = (e) Le plan osculateur a v est en chaque point le plan passant par le point p = 7(t) qui
orthogonal au vecteur B = +v. Ce plan est également le plan tangent & S en p (puisque v est par
définition orthogonal au plan tangent).

(e) = (a) Evident car le vecteur de courbure est paralléle au plan osculateur (il est combinaison linéaire
des vecteurs ¥ et 7).

Exercice 14.2. On note 7 C R3 le tore obtenu en faisant tourner le cercle de rayon 1 et de centre
(a,0,0) du plan Ozz autour de l’axe Oz (on suppose que a > 1).

a) Donner une paramétrisation du tore 7 et calculer le tenseur métrique associé.

b) Calculer I'aire de la surface T.

c¢) Calculer la courbure de Gauss K de T (on exprimera K comme fonction des paramétres de la
paramétrisation donnée en (a)).

d) Calculer I'intégrale // KdA.
T

Solution 14.2. a) Le tore 7 est la surface de révolution dont le profil est le cercle y(v) = (r(v), z(v)),
avec
r(v) =a+cos(v), z=sin(v) (0<wv<2m).

Cela nous donne la paramétrisation

Y(u,v) = ((a + cos(v)) cos(u), (a + cos(v)) sin(u), sin(v))



Le tenseur métrique est alors donné par la formule usuelle pour les surfaces de révolution :

G:<r(3)2 r'(v)?gz%v)?):((a+cgs(v))2 2)'

b) L’¢lément d’aire est dA = v/ det Gdudv = (a + cos(v))dudv, et laire est donc donnée par

2
Aire(T / / a + cos(v))dudv = 277/ (a + cos(v))dv = 4n°a.
u=0 Jv 0

¢) On a vu au cours que pour un surface de révolution dont le profil est paramétré naturellement, la
courbure de Gauss est donnée par K = —r"(v)/r(v). On a donc pour notre tore:

-1 d? cos(v)

K= a + cos(v) dv? (a4 cos(v)) = (a + cos(v))

d) On a donc finalement

// KdA = /u /U (a—ci—ozos )> (a + cos(v ))dudv—/u /U cos(v)dudv = 0.

Remarque. On peut prouver que pour toute surface homéomorphe au tore, on a [ fT KdA = 0.
C’est un cas particulier de la formule de Gauss Bonnet, qui dit que l'intégrale de la courbure d’une
surface compacte sans bord ne dépend que de la topologie de la surface (cette intégrale vaut 27 fois
la caractéristique d’Fuler de la surface, qui est un invariant topologique important. Pour un tore, la
caractéristique d’Euler est nulle).

Exercice de révision :

Exercice 14.3. (a) Soit 7 : [a,b] — R? une courbe fermée de classe C? dans le plan orienté. On
suppose que sa courbure orientée, que 'on note k, vérifie 0 < k(t) < C pour tout ¢ € [a, b].

Démontrer que la longueur ¢ de v vérifie £ > 27 /C.

(b) Est-ce que cette borne peut-étre atteinte, i.e. existe-t-il une courbe fermée ~ de classe C? dans R?
vérifiant k(t) = 27 /4(y) pour tout ¢ ?

Solution 14.3. (a) On suppose pour simplifier que 7 est paramétrée naturellement sur l'intervalle
[0,4]. Rappelons que la fonction angulaire ¢ : [a,b] — R d'une courbe C? vérifie dp = kds. Il existe
donc un entier positif d € N\ {0} (c’est le nombre de rotations de ) tel que

l 1
/ k(s)ds = / dyp = 27d.
0 0

¢ ¢
2 < 27d = / k(s)ds < / Cds = CY,
0 0

On a donc

par conséquent ¢ > 27 /C.

(b) La réponse a la seconde question est évidemment positive. Un cercle parcouru dans le sens positif
est une courbe fermée de classe C*° du plan dont la courbure est constante et vérifie k(t) = 2w /¢(7y)
pour tout ¢.



