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Le premier exercice étudie une classe de courbes sur les surfaces et dans le second, on calcule l’intégrale
de la courbure gaussienne du tore de révolution. On finit avec un exercice de révision sur la courbure
des courbes planes.

Exercice 14.1. Une courbe régulière γ : I → S tracée sur une surface régulière coorientée S ⊂ R3

de classe C2 s’appelle une ligne asymptotique1 si elle est de classe C2 et son vecteur de courbure est
tangent à la surface pour tout t ∈ I.

Prouver que les affirmations suivantes sont équivalentes:

(a) La courbe γ est une ligne asymptotique de S.

(b) La courbure normale kn de γ est identiquement nulle.

(c) h(γ̇(t), γ̇(t)) = 0 pour tout t ∈ I, où h est la seconde forme fondamentale de S.

(d) En tout point de la courbe, le vecteur binormal de γ est égale, au signe près, au vecteur de
coorientation de la surface.

(e) Le plan osculateur à γ coïncide avec le plan affine tangent en S en chaque point de γ.

(Pour les points (d) et (e) on suppose que la courbe est régulière au sens de Frenet).

Solution 14.1. Nous allons d’abord démontrer les équivalences (a)⇔ (b)⇔ (c). Puis, sous l’hypothèse
de régularité au sens de Frenet, les implications (a) ⇒ (d) ⇒ (e).

(a) ⇔ (b) : La courbure normale de γ est définie par kn(t) = 〈Kγ(t), ν(t)〉. Donc Kγ(t) ⊥ ν(t) si et
seulement si kn(t) = 0.

(b)⇔ (c) : Cette équivalence se déduit de la formule suivante, vue au cours, et qui dit que la courbure
normale de γ est donnée par

kn(t) =
h(γ̇(t), γ̇(t))

‖γ̇(t)‖2
.

Rappelons la preuve de cette formule : On a 〈ν(γ(t)), γ̇(t)〉 = 0 pour tout t ∈ I, donc

〈 d
dt
ν(γ(t)), γ̇(t)〉+ 〈ν(γ(t)), γ̈(t)〉 = 0.

En utilisant la formule de l’accélération γ̈(t) = V 2(t)Kγ(t) + V̇ (t)Tγ(t), on voit que

〈ν(γ(t)), γ̈(t)〉 = V 2(t)〈ν(γ(t)),Kγ(t)〉+ V̇ (t)〈ν(γ(t)),Tγ(t)〉

Le dernier terme est nul, donc

〈ν(γ(t)), γ̈(t)〉 = V 2(t)〈ν(γ(t)),Kγ(t)〉 = ‖γ̇(t)‖2kn(t).

D’autre part

〈 d
dt
ν(γ(t)), γ̇(t)〉 = 〈dν(γ(t)), γ̇(t)〉 = 〈L(γ(t)), γ̇(t)〉 = −h(γ̇(t), γ̇(t)).

1La terminologie est justifiée par le fait que le vecteur vitesse d’une ligne de courbure est en direction d’une asymptote
de l’indicatrice de Dupin, qui est l’ensemble des vecteurs v ∈ TpS tels que |h(v, v)| = 1 (mais ceci n’influence pas
l’exercice).
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Des trois précédentes identités, on déduit que

‖γ̇(t)‖2kn(t) = h(γ̇(t), γ̇(t)).

On a donc démontré (a) ⇔ (b) ⇔ (c) pour toute courbe de classe C2 sur la surface S.

On suppose maintenant que la courbe γ est régulière au sens de Frenet, et on note {T,N,B} le repère
de Frenet. Sous cette hypothèse on montre (a) ⇒ (d) ⇒ (e).
(a) ⇒ (d) : Par hypothèse N = 1

κK est tangent à la surface S. Par conséquent N = ±µ où µ = ν ×T
est le troisième vecteur du repère de Darboux. On a donc

B = T×N = ±T× µ = ±ν.

(d) ⇒ (e) Le plan osculateur à γ est en chaque point le plan passant par le point p = γ(t) qui
orthogonal au vecteur B = ±ν. Ce plan est également le plan tangent à S en p (puisque ν est par
définition orthogonal au plan tangent).

(e)⇒ (a) Évident car le vecteur de courbure est parallèle au plan osculateur (il est combinaison linéaire
des vecteurs γ̇ et γ̈).

Exercice 14.2. On note T ⊂ R3 le tore obtenu en faisant tourner le cercle de rayon 1 et de centre
(a, 0, 0) du plan Oxz autour de l’axe Oz (on suppose que a > 1).

a) Donner une paramétrisation du tore T et calculer le tenseur métrique associé.

b) Calculer l’aire de la surface T .

c) Calculer la courbure de Gauss K de T (on exprimera K comme fonction des paramètres de la
paramétrisation donnée en (a)).

d) Calculer l’intégrale
∫∫

T
KdA.

Solution 14.2. a) Le tore T est la surface de révolution dont le profil est le cercle γ(v) = (r(v), z(v)),
avec

r(v) = a+ cos(v), z = sin(v) (0 ≤ v ≤ 2π).

Cela nous donne la paramétrisation

ψ(u, v) = ((a+ cos(v)) cos(u), (a+ cos(v)) sin(u), sin(v))
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Le tenseur métrique est alors donné par la formule usuelle pour les surfaces de révolution :

G =

(
r(v)2 0
0 r′(v)2 + z′(v)2

)
=

(
(a+ cos(v))2 0

0 1

)
.

b) L’élément d’aire est dA =
√
detGdudv = (a+ cos(v))dudv, et l’aire est donc donnée par

Aire(T ) =
∫ 2π

u=0

∫ 2π

v=0
(a+ cos(v))dudv = 2π

∫ 2π

0
(a+ cos(v))dv = 4π2a.

c) On a vu au cours que pour un surface de révolution dont le profil est paramétré naturellement, la
courbure de Gauss est donnée par K = −r′′(v)/r(v). On a donc pour notre tore:

K =
−1

a+ cos(v)

d2

dv2
(a+ cos(v)) =

cos(v)

(a+ cos(v))

d) On a donc finalement∫∫
T
KdA =

∫ 2π

u=0

∫ 2π

v=0

(
cos(v)

a+ cos(v)

)
(a+ cos(v))dudv =

∫ 2π

u=0

∫ 2π

v=0
cos(v)dudv = 0.

Remarque. On peut prouver que pour toute surface homéomorphe au tore, on a
∫∫

T KdA = 0.
C’est un cas particulier de la formule de Gauss Bonnet, qui dit que l’intégrale de la courbure d’une
surface compacte sans bord ne dépend que de la topologie de la surface (cette intégrale vaut 2π fois
la caractéristique d’Euler de la surface, qui est un invariant topologique important. Pour un tore, la
caractéristique d’Euler est nulle).

Exercice de révision :

Exercice 14.3. (a) Soit γ : [a, b] → R2 une courbe fermée de classe C2 dans le plan orienté. On
suppose que sa courbure orientée, que l’on note k, vérifie 0 ≤ k(t) ≤ C pour tout t ∈ [a, b].

Démontrer que la longueur ` de γ vérifie ` ≥ 2π/C.

(b) Est-ce que cette borne peut-être atteinte, i.e. existe-t-il une courbe fermée γ de classe C2 dans R2

vérifiant k(t) = 2π/`(γ) pour tout t ?

Solution 14.3. (a) On suppose pour simplifier que γ est paramétrée naturellement sur l’intervalle
[0, `]. Rappelons que la fonction angulaire ϕ : [a, b] → R d’une courbe C2 vérifie dϕ = kds. Il existe
donc un entier positif d ∈ N \ {0} (c’est le nombre de rotations de γ) tel que∫ `

0
k(s)ds =

∫ `

0
dϕ = 2πd.

On a donc

2π ≤ 2πd =

∫ `

0
k(s)ds ≤

∫ `

0
Cds = C`,

par conséquent ` ≥ 2π/C.

(b) La réponse à la seconde question est évidemment positive. Un cercle parcouru dans le sens positif
est une courbe fermée de classe C∞ du plan dont la courbure est constante et vérifie k(t) = 2π/`(γ)
pour tout t.
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