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Objectifs. Dans cette série, on continue l’étude des courbes sur les surfaces et les différentes notions
de courbure. Il s’agit en particulier de se familiariser avec les méthodes de calculs, tout en faisant le
lien avec la géométrie des surfaces.

A. Exercices standards.

Exercice 13.1. Calculer le tenseur métrique, la deuxième forme fondamentale et l’application de
Weingarten de la caténoïde i.e. la surface de révolution de la chainette α(t) = (t, cosh(t)).
On rappelle que cette surface peut se paramétriser ainsi (comme surface de révolution autour de l’axe
Ox) :

ψ(s, θ) =
(

log(s+
√

1 + s2),
√

1 + s2 cos(θ),
√

1 + s2 sin(θ)
)
.

Que valent la courbure moyenne et la courbure de Gauss de cette surface ?

Solution 13.1. Le repère adapté à la paramétrisation choisie est donné par

b1 =
∂ψ

∂s
=

(1, s cos(θ), s sin(θ))√
1 + s2

,

b2 =
∂ψ

∂θ
=
√

1 + s2 (0,− sin(θ), cos(θ))

ν =
b1 × b2

‖b1 × b2‖
=

(s,− cos(θ),− sin(θ))√
1 + s2

.

La matrice du tenseur métrique est donc

G(s, θ) =

(
1 0
0 1 + s2

)
Les coefficients de la seconde forme fondamentale peuvent se calculer de plusieurs manières :

h11 = 〈∂b1

∂s
,ν〉 = −〈b1,

∂ν

∂s
〉

h12 = h21 = 〈∂b1

∂θ
,ν〉 = −〈b1,

∂ν

∂θ
〉 = −〈b2,

∂ν

∂s
〉

h22 = 〈∂b2

∂θ
,ν〉 = −〈b2,

∂ν

∂θ
〉

on a
∂ν

∂s
=

(1, s cos(θ), s sin(θ))

(1 + s2)3/2
,

∂ν

∂θ
=

(0, sin(θ),− cos(θ))√
1 + s2

.

donc
h1,1 = −〈b1,

∂ν

∂s
〉 =

−1

1 + s2
, h2,2 = −〈b2,

∂ν

∂θ
〉 = 1, h1,2 = −〈b1,

∂ν

∂θ
〉 = 0.

La matrice de la seconde forme fondamentale est donc

H(s, θ) =

(
− 1

1+s2
0

0 1

)
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La matrice de Weingarten peut maintenant se calculer par la formule

L = −G−1H =
1

1 + s2

(
1 0
0 −1

)

Dans cet exemple il n’est pas difficile de calculer directement cette matrice : l’application de Weingarten L est
la différentielle du vecteur normal, que l’on exprime dans la base {b1,b2} du plan tangent à la caténoïde. Ici
les calculs sont simples :

L(b1) =
∂ν

∂s
=

1

1 + s2
b1, L(b2) =

∂ν

∂θ
= − 1

1 + s2
b2.

Donc la matrice de L dans la base {b1,b2} est

L =
1

1 + s2

(
1 0
0 −1

)
On obtient maintenant la courbure de Gauss et la courbure moyenne de la caténoïde.

K = det(L) = − 1

(1 + s2)2
, H = −1

2
Trace(L) = 0.

Remarques.

(i) On peut aussi calculer la courbure de Gauss directement à partir des matrices G et H par la

formule K =
det(H)

det(G)
= − 1

(1 + s2)2
.

(ii) La caténoïde est une surface de courbure moyenne nulle. Une telle surface s’appelle une surface
minimale.

Exercice 13.2. Soit S ⊂ R3 une surface de classe C2 dont on note H et K les courbures moyenne et
de Gauss respectivement. Montrer que les courbures principales sont données par

k1, k2 = H ±
√
H2 −K.

Solution 13.2. C’est de l’algèbre élémentaire : De H = 1
2(k1 + k2) et K = k1k2 on déduit que

H2 −K = 1
4(k1 − k2)2. Supposons (quitte à échanger k1 et k2) que k1 ≥ k2, alors on a

1

2
(k1 + k2) = H,

1

2
(k1 − k2) =

√
H2 −K.

Donc k1 = H +
√
H2 −K et k2 = H −

√
H2 −K.

Exercice 13.3. Montrer que la courbure de Gauss et la courbure moyenne peuvent s’écrire en fonction
des coefficients (gij) et (hij) des deux formes fondamentales par

K =
h11h22 − h212
g11g22 − g212

et H =
g11h22 − 2 g12h12 + g22h11

2(g11g22 − g212)
.
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Solution 13.3. C’est du calcul matriciel : on a L = −G−1H avec

G =

(
g11 g12
g12 g22

)
et H =

(
h11 h12
h12 h22

)

La première identité est simplement la relation K = det(L) =
det(H)

det(H)
.

Pour la deuxième identité on calcule

L = −G−1H =
1

g11g22 − g212

(
−g22h11 + g12h12 −g22h12 + g12h22
g12h11 − g11h12 g12h12 − g11h22

)
et donc

H = −1

2
Trace(L) =

1

2

g11h22 − 2 g12h12 + g22h11
g11g22 − g122

.

Exercice 13.4. Soit ψ1 : Ω → S ⊂ R3 une surface régulière de classe C2 et λ > 0. On note
ψ2 = λψ1 : Ω → λS ⊂ R3 la surface obtenue en appliquant une homothétie de rapport λ. Quelle est
la relation entre la courbure de Gauss K1(u, v) en un point p = ψ1(u, v) de S et la courbure de Gauss
K2(u, v) en un point q = λp = ψ2(u, v) de λS ?

Solution 13.4. La courbure de toute courbe tracée sur la surface S est multipliée par 1/λ lors de
l’homothétie de rapport λ. La courbure de Gauss est le produit des deux courbures principales, donc
est multipliée par 1/λ2.

Exercice 13.5. Soit γ : I → R3 une courbe de classe C3 birégulière. Prouver que si ‖γ̇‖ est constante,
alors γ est une géodésique de la surface réglée S de paramétrisation ψ(u, v) = γ(u)+vBγ(u), où Bγ(u)
est le vecteur binormal de γ.

Solution 13.5. Par construction, le vecteur µ est (au signe près) le vecteur qui est orthogonal à γ̇
et tangent à la surface. On a donc µ = ±B pour la surface réglée S de l’exercice. En comparant les
équations de Darboux et celles de Serret-Frenet on voit que la courbure géodésique kg de γ est nulle.
On conclut en remarquant qu’une courbe sur une surface est une géodésique si et seulement si elle est
de vitesse constante et de courbure géodésique nulle.

Autre argument : Notons S = ψ(I × (−ε, ε)) ⊂ R3 la surface paramétrée par ψ (on prend ε > 0
assez petit pour que la surface soit régulière). Notons ν : S → S2 la co-rientation de la surface et Nγ

le vecteur normal principal à γ. Il est clair qu’en tout u ∈ I, les vecteurs γ̇(u) et Bγ(u) forment une
base de TpS (avec p = γ(u) = ψ(u, 0)). Par conséquent on a ν = ±Nγ et donc

γ̈(u) = V 2κγ(u)Nγ(u) = ±V 2κγ(u)ν(ψ(u, 0)),

où V = ‖γ̇‖. L’accélération est colinéaire au vecteur normal à la surface, ce qui signifie que γ est
géodésique.

Exercice 13.6. Une courbe régulière γ de classe C2 sur une surface S est une ligne de courbure si sa
courbure normale est en tout point une courbure principale.
Montrer que γ est une ligne de courbure si et seulement si sa torsion géodésique est nulle.
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Solution 13.6. La deuxième équation de Darboux dit que 1
V ν̇ = −knT + τgµ. On a écrit ν(t) =

ν(γ(t)) pour simplifier, donc en développant on a

V (−knT + τgµ) = ν̇ =
dν(γ(t))

dt
= dν(γ̇(t)) = −L(γ̇(t)).

On a donc L(γ̇(t)) = V (−knT + τgµ) = knγ̇ + V τgµ, ce qui signifie que γ̇(t) est un vecteur propre de
l’application de Weingarten si et seulement si τg = 0.

Exercice 13.7. Prouver que la courbure de Gauss d’une surface réglée S est ≤ 0 (pas besoin de faire
de calculs).

Solution 13.7. Puisque la surface est réglée, il existe pour tout point p ∈ S une segment de droite
passant par p et contenu dans la surface. Notons v ∈ TpS la direction de cette droite, alors la courbure
normale de S en p est nulle pour la direction v. Si on note k1(p) la plus petite courbure normale de
S en p et k1(p) la plus grande courbure normale de S en p, alors on doit avoir k1(p) ≤ 0 ≤ k2(p), et
donc la courbure de Gauss K(p) = k1(p)k2(p) ≤ 0.

Exercice 13.8. Prouver que la caténoïde et l”hélicoïde sont localement isométriques.

Solution 13.8. Le tenseur métrique de l”hélicoïde dans les paramètres (u, v) s’écrit
(

1 + v2 0
0 1

)
(voir

exercice 12.3) et le tenseur métrique de la caténoïde dans les paramètres (s, θ) s’écrit
(

1 0
0 1 + s2

)
(voir exercice 13.1).
Le changement de paramètres u = θ, v = s définit donc une isométrie locale entre les deux surfaces .

Remarque. Le fait que la caténoïde et l’hélicoïde sont localement isométriques impliquent que ces
deux surfaces ont la même courbure de Gauss, à cause du théorème egregium, ce que confirment les
calculs.

Voici deux vidéos intéressantes illustrant l’isométrie entre la caténoïde et l’hélicoïde :
https://www.youtube.com/watch?v=VRY42CogW0I

et ici : https://www.youtube.com/shorts/RYHxW8GTQgQ

B. Exercice supplémentaire

Exercice 13.9. Montrer que la pseudo-sphère de Beltrami est intrinsèquement isométrique au demi-
plan de Poincaré. Puis calculer son aire

Solution 13.9. La pseudo-sphère de Beltrami est la surface de révolution autour de l’axe Oz de profil
γ(v) = (r(v), z(v)), où

r(v) = e−v, z(v) =

∫ v

0

√
1− e−2sds.

On vérifie facilement que ‖γ̇‖ = 1, donc le tenseur métrique est G =

(
e−2v 0

0 1

)
, qu’on peut écrire

ds2 = dv2 + e−2vdu2.
Rappelons maintenant que le demi-plan de Poincaré est le demi-plan {(x, y) ∈ R2 | y > 0} avec le

tenseur métrique (métrique Riemannienne) ds2 =
dx2 + dy2

y2
.
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Si on pose u = x et v = log(y), alors 1
y2

= e−2v et on a

dx2 + dy2

y2
= e−2vdu2 + dv2,

donc le difféomorphisme h := (x, y) 7→ (u, v) = (x, log(y)) réalise une isométrie locale entre les deux
métriques.

Si on préfère, on peut voir cela matriciellement :

Dh =

(
1 0
0 1/y

)
, donc Dh>

(
e−2v 0

0 1

)
Dh =

(
e−2v 0

0 1/y2

)
=

(
1/y2 0

0 1/y2

)
.

Pour calculer l’aire de la pseudo-sphère on peut choisir le domaine de paramétrisation Ω = {(u, v) ∈
R2 | 0 ≤ u ≤ 2π, 0 < v <∞}. On a donc

Aire =

∫ ∞
v=0

∫ 2π

u=0
e−vdvdu = 2π.

On peut aussi faire la calcul dans les coordonnées (x, y) :

Aire =

∫ ∞
y=1

∫ 2π

x=0

1

y2
dxdy = 2π,

(noter que v > 0 est équivalent à y > 1).

A noter : Sur Moodle, dans la rubrique "vidéos" il y a un lien vers une vidéo de K. Crane présentant
un panorama assez complet de la courbure des courbes et des surfaces. Cette vidéo est de grande
qualité mais aussi très dense, à regarder en petites tranches. Les première 55-60 minutes recouvrent
des thèmes vus au cours, ensuite la vidéo illustre d’autres thèmes.
La vidéo se trouve aussi ici : https://www.youtube.com/watch?v=e-erMrqBd1w
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