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Objectifs. Dans cette série, on continue ’étude des courbes sur les surfaces et les différentes notions
de courbure. Il s’agit en particulier de se familiariser avec les méthodes de calculs, tout en faisant le
lien avec la géométrie des surfaces.

A. Exercices standards.

Exercice 13.1. Calculer le tenseur métrique, la deuxiéme forme fondamentale et ’application de
Weingarten de la caténoide i.e. la surface de révolution de la chainette «(t) = (¢, cosh(t)).

On rappelle que cette surface peut se paramétriser ainsi (comme surface de révolution autour de l’axe

Ox) :

P(s,0) = <log(s +V1+82), V1 + s2cos(), V1 + 52 sin(&)) )
Que valent la courbure moyenne et la courbure de Gauss de cette surface ?
Solution 13.1. Le repére adapté & la paramétrisation choisie est donné par

(b _ ¢ (1,scos(f), ssin(6))
YT os V14 s2

by = ?;g =1+ s2(0,—sin(f), cos(h))
b; x by (s, —cos(f), —sin(0)) .

v — —

by xbyf| V1+ 2

La matrice du tenseur métrique est donc

Gls,0) = <(1) 1ESQ>

Les coeflicients de la seconde forme fondamentale peuvent se calculer de plusieurs maniéres :

_ 8b1 . 81/
hi1 = <§7V> = —<b1,£>
O O v
h12 ho1 = <W’V> = —(by, 89> = —(bo, 63>
~,0by B 071/
h22 _<W7V>__<b2, 89>
on a
Ov _ (1,scos(f),ssin(6)) Ov _ (0,sin(6), — cos(6))
ds (1 + s2)3/2 ’ 00 V14 s2 '
donc

v -1 ov ov
1, $> BEESE ha o = —(ba, 87> =1, hi2 = —(by, %>

La matrice de la seconde forme fondamentale est donc

-1
HWQ):( 0 1>

hiy=—(b = 0.



La matrice de Weingarten peut maintenant se calculer par la formule

1 (1 0
EEPT B2
L--G'H 1+s2(0—1>

Dans cet exemple il n’est pas difficile de calculer directement cette matrice : 'application de Weingarten L est
la différentielle du vecteur normal, que ’on exprime dans la base {b1, b2} du plan tangent a la caténoide. Ici
les calculs sont simples :

Oov 1 Ov 1
L(bl) - E == 1_’_782]317 L(bg) == % == —mbg

Donc la matrice de L dans la base {by, by} est

1 1 0
L_1+32<0 —1)

On obtient maintenant la courbure de Gauss et la courbure moyenne de la caténoide.

1

K =det(L) = —m,

1
H = —3 Trace(L) = 0.

Remarques.

(i) On peut aussi calculer la courbure de Gauss directement & partir des matrices G et H par la
det(H) 1

formule K = = —

det(Q) (1+ %)%

(ii) La caténoide est une surface de courbure moyenne nulle. Une telle surface s’appelle une surface
minimale.

Exercice 13.2. Soit S C R3 une surface de classe C? dont on note H et K les courbures moyenne et
de Gauss respectivement. Montrer que les courbures principales sont données par

ki, ke = H 4+ /H? — K.

Solution 13.2. C’est de 'algebre élémentaire : De H = %(kl + ko) et K = kiko on déduit que
H?> - K = %(k:l — ko)2. Supposons (quitte & échanger k; et ko) que k; > ko, alors on a

1

§(k1 +ky) =H,

1

Sk — k) = VAT K.

Doncki=H+vVH? —-Kethky=H—-+VH? - K.

Exercice 13.3. Montrer que la courbure de Gauss et la courbure moyenne peuvent s’écrire en fonction
des coeflicients (g;;) et (hi;j) des deux formes fondamentales par

_ hi1has — h3, ot _ gi1haa — 2 g12hi2 + g22h11

K
G11922 — 939 2(g11922 — 935)




Solution 13.3. C’est du calcul matriciel : on a L = —G~1H avec

G_<911 912> ot H_<h11 h12)
g12  go2 hia  hoo

det(H)
L iére identité est simpl t1 lation K = det(L) = .
a premiére identité est simplement la relation et(L) det(H)
Pour la deuxiéme identité on calcule
_ 1T 1 —g22h11 + gi2hi2 —g22h12 + g12hoo
L=-G'H=—
g11922 — 935 \ g12h11 —giihi2 gizhie — gi1ha

et donc

_ Lguhay — 2912012 + g2ohn

1
H = ——Trace(L
2 () 2 911922 — g12°

Exercice 13.4. Soit ¢ : Q@ — S C R3 une surface réguliére de classe C? et A > 0. On note
Py = My : @ — AS C R3 la surface obtenue en appliquant une homothétie de rapport A. Quelle est
la relation entre la courbure de Gauss Ki(u,v) en un point p = 91 (u,v) de S et la courbure de Gauss
Ks(u,v) en un point ¢ = A\p = ¢2(u,v) de \S 7

Solution 13.4. La courbure de toute courbe tracée sur la surface S est multipliée par 1/X lors de
I’homothétie de rapport A. La courbure de Gauss est le produit des deux courbures principales, donc
est multipli¢e par 1/)2.

Exercice 13.5. Soit v : I — R? une courbe de classe C? biréguliére. Prouver que si ||| est constante,
alors v est une géodésique de la surface réglée S de paramétrisation ¢(u, v) = vy(u) +vB,(u), ot B4 (u)
est le vecteur binormal de 7.

Solution 13.5. Par construction, le vecteur p est (au signe prés) le vecteur qui est orthogonal a ¥
et tangent & la surface. On a donc u = £B pour la surface réglée S de 'exercice. En comparant les
équations de Darboux et celles de Serret-Frenet on voit que la courbure géodésique k, de v est nulle.
On conclut en remarquant qu’une courbe sur une surface est une géodésique si et seulement si elle est
de vitesse constante et de courbure géodésique nulle.

Autre argument :  Notons S = (I x (—¢,g)) C R? la surface paramétrée par 1 (on prend ¢ > 0
assez petit pour que la surface soit réguliére). Notons v : S — S? la co-rientation de la surface et N,
le vecteur normal principal & . Il est clair qu’en tout u € I, les vecteurs 4(u) et By (u) forment une
base de T),S (avec p = y(u) = ¢(u,0)). Par conséquent on a v = £IN,, et donc

A(u) = Vzlﬁ;v(u)Ny(u) = :|:V2/<;7(u)1/(¢(u, 0)),

ou V = ||§||. L’accélération est colinéaire au vecteur normal & la surface, ce qui signifie que 7 est
géodésique.

Exercice 13.6. Une courbe réguliére v de classe C? sur une surface S est une ligne de courbure si sa
courbure normale est en tout point une courbure principale.
Montrer que v est une ligne de courbure si et seulement si sa torsion géodésique est nulle.



Solution 13.6. La deuxi¢me équation de Darboux dit que & = —k, T + 7yu. On a écrit v(t) =
v(v(t)) pour simplifier, donc en développant on a

. odu(y(t ) .
VT ) == P00 ) < L)
On a donc L(¥(t)) = V(=kn,T 4+ 14p) = kn*y + V1yp, ce qui signifie que 4(t) est un vecteur propre de
I'application de Weingarten si et seulement si 7, = 0.

Exercice 13.7. Prouver que la courbure de Gauss d’une surface réglée S est < 0 (pas besoin de faire
de calculs).

Solution 13.7. Puisque la surface est réglée, il existe pour tout point p € S une segment de droite
passant par p et contenu dans la surface. Notons v € T),S la direction de cette droite, alors la courbure
normale de S en p est nulle pour la direction v. Si on note ki(p) la plus petite courbure normale de
S en p et ki(p) la plus grande courbure normale de S en p, alors on doit avoir k1(p) < 0 < ka(p), et
donc la courbure de Gauss K (p) = ki(p)ka(p) < 0.

Exercice 13.8. Prouver que la caténoide et 1”hélicoide sont localement isométriques.

2
Solution 13.8. Le tenseur métrique de 1”hélicoide dans les paramétres (u, v) s’écrit <1 T)U (1)> (voir

. . . . (1 0
exercice 12.3) et le tenseur métrique de la caténoide dans les paramétres (s,6) s’écrit <0 14 32>

(voir exercice 13.1).
Le changement de paramétres u = 0, v = s définit donc une isométrie locale entre les deux surfaces .

Remarque. Le fait que la caténoide et I’hélicoide sont localement isométriques impliquent que ces
deux surfaces ont la méme courbure de Gauss, & cause du théoréme egregium, ce que confirment les
calculs.

Voici deux vidéos intéressantes illustrant ’isométrie entre la caténoide et ’hélicoide :
https://www.youtube.com/watch?v=VRY42CogWOI

et ici : https://www.youtube.com/shorts/RYHxWSGTQgQ

B. Exercice supplémentaire

Exercice 13.9. Montrer que la pseudo-sphére de Beltrami est intrinséquement isométrique au demi-
plan de Poincaré. Puis calculer son aire

Solution 13.9. La pseudo-sphére de Beltrami est la surface de révolution autour de I'axe Oz de profil

v(v) = (r(v), 2(v)), ou ;
r(v)=e7", z(v) = /0 V1 —e2ds.
—2v

0 1), qu’on peut écrire

On vérifie facilement que [|¥|| = 1, donc le tenseur métrique est G = <e
ds? = dv® 4 e~ du?.

Rappelons maintenant que le demi-plan de Poincaré est le demi-plan {(z,y) € R? |y > 0} avec le
dx? + dy?

tenseur métrique (métrique Riemannienne) ds? = 5
Y


https://www.youtube.com/watch?v=VRY42CogW0I
https://www.youtube.com/shorts/RYHxW8GTQgQ

Si on pose u = z et v = log(y), alors
= e 2du? + dv?,

donc le difféeomorphisme h := (x,y) — (u,v) = (z,log(y)) réalise une isométrie locale entre les deux
métriques.

Si on préfére, on peut voir cela matriciellement :

(1 0 T (e 0 (e 0\ [(1/y* 0
Dh—<0 1/y>, donc Dh <0 1>Dh—< 0 1/y2>—< 0 1/y2 .

Pour calculer aire de la pseudo-sphére on peut choisir le domaine de paramétrisation = {(u,v) €
R?2|0<u<2m 0<v<oo} Onadonc

e’} 27
Aire = / / e Ydvdu = 2.
v=0 Ju=0

On peut aussi faire la calcul dans les coordonnées (x,y) :

oo 2T 1
Aire = / / —drdy = 2,
y=1Jz=0Y

(noter que v > 0 est équivalent & y > 1).

A noter : Sur Moodle, dans la rubrique "vidéos" il y a un lien vers une vidéo de K. Crane présentant
un panorama assez complet de la courbure des courbes et des surfaces. Cette vidéo est de grande
qualité mais aussi trés dense, & regarder en petites tranches. Les premiére 55-60 minutes recouvrent
des thémes vus au cours, ensuite la vidéo illustre d’autres thémes.

La vidéo se trouve aussi ici : https://www.youtube.com/watch?v=e-erMrqBdlw


https://www.youtube.com/watch?v=e-erMrqBd1w

