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Objectifs. Cette série a pour but d’explorer la courbure des surfaces et les différentes notions qui
apparaissent dans cette théorie; et comprendre comment calculer ces courbures.

A. Exercices standards.

Exercice 12.1. Prouver que si γ est une courbe birégulière de classe C2 qui est géodésique d’une
surface coorientée S, alors la torsion de γ (en tant que courbe dans R3) coïncide au signe près avec la
torsion géodésique de cette courbe (ce résultat explique la terminologie de torsion géodésique).

La réciproque de cet énoncé est-elle valable (i.e. est-ce qu’une courbe sur une surface telle que la
torsion géodésique est égale à la torsion est toujours une géodésique de cette surface) ?

Indication. Dans cet exercice il est utile de comparer les équations de Darboux et de Serret-Frenet pour la
courbe γ.

Solution 12.1. Notons ν la coorientation de la surface, et notons pour simplifier la restriction de ν à
la courbe γ par ν(t) = ν(γ(t)). Écrivons les équations de Darboux et celles de Serret-Frenet pour la
courbe γ : 

1
V Ṫ = kgµ + knν,
1
V ν̇ = −knT + τgµ
1
V µ̇ = −kgT− τgν

et


1
V Ṫ = κN,
1
V Ṅ = −κT + τ B,
1
V Ḃ = − τ N.

Si γ est géodésique, alors sa courbure géodésique kg est nulle et la première équation implique que
ν = ±Nγ (le vecteur normal principal de γ), et quitte à changer le choix de la co-orientation (i.e.
remplacer ν par −ν), nous pouvons supposer que ν(t) = Nγ .

Les équations ci-dessus impliquent alors que κ = kg et que µ = ±Bγ (le vecteur binormal de γ), par
conséquent τ = ±τg.

La réciproque n’est pas valable. Par exemple si la surface S est un plan, alors la torsion de toute
courbe birégulière γ tracée sur S est nulle. Le vecteur ν normal à S est constant, donc la torsion
géodésique de γ est également nulle (car τg(t) = 〈ν̇,µ〉 = 0). Les deux torsions coïncident (elles sont
nulles), pourtant γ n’est pas une géodésique (dans ce cas γ n’est même jamais une géodésique puisque
la courbe doit être birégulière et les géodésiques d’un plan sont des droites).

Exercice 12.2. Calculer la courbure moyenne et la courbure de Gauss du cylindre circulaire droit
C ⊂ R3 défini par l’équation x2 + y2 = a2. (Peut-on prédire ces valeurs sans faire de calculs ?).

Solution 12.2. La courbure de Gauss est le produit des courbures principales et la courbure moyenne
en est la demi-somme. On sait aussi que les directions principales (i.e. les directions des courbures
principales) sont orthogonales.
Il est intuitivement clair que toutes les courbures normales d’un cylindre circulaire droit ont le même
signe (négatif ou positif selon le choix de la co-orientaton). Par chaque point du cylindre il passe une
droite, donc la courbure minimale (ou maximale) est nulle. L’autre courbure principale est celle de
la direction orthogonale à la droite, c’est-à-dire la courbure du cercle de rayon a. Cette courbure est
égale à ± 1

a (le signe dépendant de l’orientation). Par conséquent la courbure de Gauss est K = 0 et la
courbure moyenne est H = ± 1

2a .
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Voyons l’approche analytique. Une paramétrisation du cylindre est ψ(u, v) = (a cos(u), a sin(u), v)
(avec (u, v) ∈ Ω = [0, 2π]× R). La base du plan tangent adaptée à cette paramétrisation est

b1(u, v) =
∂ψ

∂u
= (−a sin(u), a cos(u), 0), b2(u, v) =

∂ψ

∂v
= (0, 0, 1)

et
ν(u, v) =

b1 × b2

‖b1 × b2‖
= (cos(u), sin(u), 0).

On constate que b1 et b2 sont des vecteurs propres de l’application de Weingarten L = dν, en effet

L(b1) = dν(b1) =
∂ν

∂u1
= (− sin(u), cos(u), 0) =

1

a
· b1

et
L(b2) = dν(b2) =

∂ν

∂u2
= 0 = 0 · b2

Donc dans la base {b1,b2} du plan tangent TpC (en un point quelconque du cylindre), la matrice de
l’application de Weingarten est

L =

(
1
a 0
0 0

)
.

Par conséquent la courbure de Gauss est K = det(L) = 0 et la courbure moyenne est

H = −1

2
Trace(L) = − 1

2a
.

Remarquons qu’on aurait pu choisir l’autre signe pour la coorientation ν, dans ce cas on aurait obtenu
H = 1

2a .

Exercice 12.3. (a) Calculer le tenseur métrique, la deuxième forme fondamentale et l’application de
Weingarten de l’hélicoïde

ψ(u, v) = (v cos(u), v sin(u), u).

(b) Que valent la courbure moyenne et la courbure de Gauss de cette surface ?

Solution 12.3. (a) Le repère adapté à notre paramétrisation est donné par

b1 =
∂ψ

∂u
= (−v sin(u), v cos(u), 1)

b2 =
∂ψ

∂v
= (cos(u), sin(u), 0)

ν =
b1 × b2

‖b1 × b2‖
=

(− sin(u), cos(u),−v)√
1 + v2

.

La matrice du tenseur métrique est donc

G(u, v) =

(
1 + v2 0

0 1

)
Pour calculer les coefficients de la deuxième forme fondamentale, on calcule d’abord

∂2ψ

∂u2
= −v(cos(u), sin(u), 0),

∂2ψ

∂u∂v
= (− sin(u), cos(u), 0),

∂2ψ

∂v2
= (0, 0, 0).
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On a donc

h11 = 〈∂
2ψ
∂u2

,ν〉 = 0, h22 = 〈∂
2ψ
∂v2

,ν〉 = 0, h12 = h21 = 〈 ∂
2ψ

∂u∂v ,ν〉 =
1√

1 + v2
.

Qu’on écrit matriciellement

H =

(
0 1√

1+v2
1√

1+v2
0

)
La matrice de l’application de Weingarten est alors

L = −G−1H =

(
0 −

(
v2 + 1

)−3/2
− 1√

v2+1
0

)

(b) La courbure de Gauss est

K = det(L) =
det(H)

det(G)
= − 1

(1 + v2)2
.

La courbure moyenne est

H = −1

2
Trace(L) = 0.

Exercice 12.4. Montrer que la matrice de la seconde forme fondamentale du graphe de la fonction
ϕ : Ω→ R, de classe C2 (où Ω est un domaine de R2) est

H =
1√

1 + ϕ2
x + ϕ2

y

(
ϕxx ϕxy
ϕxy ϕyy

)

Solution 12.4. Le graphe de la fonction (de deux variables) ϕ est la surface d’équation z = ϕ(x, y),
un paramétrage de cette surface est donné par ψ(x, y) = (x, y, ϕ(x, y)). Nous utiliserons pour simplifier
les notations suivantes pour les dérivées partielles

ϕx =
∂ϕ

∂x
, ϕy =

∂ϕ

∂y
, ϕxx =

∂2ϕ

∂x2
, ϕyy =

∂2ϕ

∂y2
, ϕxy = ϕyx =

∂2ϕ

∂x∂y
.

Rappelons que la deuxième forme fondamentale est la forme bilinéaire symétrique dont la matrice
H = (hij) dans la base adaptée {b1,b2} de TpS est donnée par

hij = h(bi, bj) = 〈 ∂2ψ

∂xi∂xj
,ν〉 = 〈∂bi

∂xj
,ν〉

où ν est le champ de vecteurs normal à la surface. On a

b1 =
∂ψ

∂x
= (1, 0, ϕx) et b2 =

∂ψ

∂y
= (0, 1, ϕy),

donc
ν =

b1 × b2

‖b1 × b2‖
=

(−ϕx,−ϕy, 1)√
1 + ϕ2

x + ϕ2
y

.
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On calcule facilement que

∂2ψ

∂x2
= (0, 0, ϕxx),

∂2ψ

∂x∂y
= (0, 0, ϕxy),

∂2ψ

∂x2
= (0, 0, ϕyy), (1)

par conséquent

h11 = 〈∂
2ψ

∂x2
,ν〉 =

〈(0, 0, ϕxx), (−ϕx, ϕy, 1)〉√
1 + ϕ2

x + ϕ2
y

=
ϕxx√

1 + ϕ2
x + ϕ2

y

,

et de même
h12 =

ϕxy√
1 + ϕ2

x + ϕ2
y

, h22 =
ϕyy√

1 + ϕ2
x + ϕ2

y

.

Exercice 12.5. Est-ce que la matrice de l’application de Weingarten d’une surface est toujours une
matrice symétrique ?

Solution 12.5. L’application de Weingarten est un endomorphisme autoadjoint Lp : TpS → TpS du
plan tangent à une surface. Sa matrice dépend du choix d’une base de TpS, si cette base est orthonormée
alors la matrice de Lp est en effet symétrique, mais ça n’est pas le cas en général. L’exemple de
l’hélicoïde montre que en effet la matrice de Lp peut être non symétrique.

Exercice 12.6. Soit p un point non ombilique d’une surface régulière de classe C2. On note v1 et v2

les vecteurs unités de TpS dans les direction principales. Prouver la formule d’Euler, qui dit que la
courbure normale du vecteur vθ = cos(θ)v1 + sin(θ)v2 ∈ TpS est donnée par

kn(vθ) = k1 cos(θ)2 + k2 sin(θ)2,

où k1, k2 sont les courbures principales de S en p.
En déduire que k1 et k2 sont les valeurs minimale et maximale de la courbure normale de S au point
p.
(On rappelle qu’un point de la surface S est dit ombilique si les deux courbures principales en ce point
coïncident : k1 = k2).

Solution 12.6. Les directions principales en un point non ombilique de la surface S sont les directions
des vecteurs propres de l’application de Weingarten Lp. Comme Lp est autoadjointe, ces directions
sont orthogonales. Donc {v1,v2} est une base orthonormée de TpS.

Le vecteur vθ est de norme 1, donc on a d’une part

kn(vθ) =
h(vθ,vθ)

‖vθ‖2
= h(vθ,vθ)

= h (cos(θ)v1 + sin(θ)v2, cos(θ)v1 + sin(θ)v2)

= cos(θ)2h(v1,v1) + 2 sin(θ) cos(θ)h(v1,v2) + sin(θ)2h(v2,v2)

D’autre part
h(vi,vj) = −〈L(vi),vj〉 = 〈kivi,vj〉 = kiδij

et donc
kn(vθ) = k1 cos(θ)2 + k2 sin(θ)2.
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B. Exercice supplémentaire (sur les géodésiques des surfaces de révolution).

Exercice 12.7. Le but est de cet exercice est de déterminer toutes les géodésiques des surfaces de
révolution. On considère la surface de révolution ψ : Ω = [0, 2π]× I → S ⊂ R3 donnée par

ψ(θ, s) = (r(s) cos(θ), r(s) sin(θ), z(s))

(a) On considère une courbe γ(t) (t ∈ J), de classe C2 tracée sur la surface S. Montrer que pour tout
t ∈ J on a

〈γ̈(t),
∂ψ

∂θ
〉 =

d

dt

(
r2θ̇(t)

)
,

où le point signifie la dérivée par rapport au paramètre t.
(b) Montrer que si γ(t) est une géodésique, alors les quantités

r2(t)θ̇(t) et (r(t)θ̇(t))2 + ṙ(t)2 + ż(t)2

sont constantes (indépendante de t).
(c) Montrer que la fonction t 7→ 1/r(t) est bornée pour toute géodésique qui n’est pas un méridien de
la surface de révolution.
(d) Montrer que la hauteur de toute géodésique dans la pseudo-sphère qui n’est pas un méridien est
une courbe bornée dans R3.

Indication pour (c). On peut calculer la vitesse et l’accélération de γ en coordonnées cylindriques.

Solution 12.7. (a) La courbe γ peut s’écrire

γ(t) = ψ(θ(t), s(t)) = (r(s(t)) cos(θ(t)), r(s(t)) sin(θ(t)), z(s(t))) .

Dans la suite de l’exercice, on écrit pour simplifier r(t) pour r(s(t)) et z(t) pour z(s(t)), notons toutefois

que ṙ =
dr

ds

ds

dt
et ż =

dz

ds

ds

dt
. On a alors

γ̇ =
d

dt
γ = ṙ ·

cos(θ)
sin(θ)

0

+ rθ̇ ·

− sin(θ)
cos(θ)

0

+ ż ·

0
0
1


En dérivant une seconde fois, on a

γ̈ =
d2

dt2
γ = r̈ ·

cos(θ)
sin(θ)

0

+ (2ṙθ̇ + rθ̈) ·

− sin(θ)
cos(θ)

0

− rθ̇2 ·
cos(θ)

sin(θ)
0

+ z̈ ·

0
0
1


D’autre part on a

∂ψ

∂θ
= b1 = r ·

 − sin(θ)
cos(θ)

0

 .

et donc
〈γ̈(t),

∂ψ

∂θ
〉 = r · (2ṙθ̇ + rθ̈) =

d

dt

(
r2θ̇
)
.

(b) Si γ est géodésique, alors par le point (a)

d

dt

(
r2θ̇
)

= 〈γ̈(t),
∂ψ

∂θ
〉 = 0,
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donc r2θ̇ est constante. D’autre part, on sait que la vitesse de γ est constante, par conséquent

‖γ̇(t)‖2 = ṙ(t)2 + (r(t)θ̇(t))2 + ż(t)2 = constante

(le vecteur γ̇(t) est calculé plus haut).

(c) Le résultat en (b) nous dit que pour toute géodésique sur la surface de révolution S il existe des
constantes a et b telles que

r2θ̇ = a et (rθ̇)2 + ṙ2 + ż2 = b.

Notons pour la suite que b > 0. On a donc

a2

r2
= (rθ̇)2 = b− ṙ2 − ż2 ≤ b.

Deux cas se présentent. Si θ̇ s’annule en un point, alors a = 0 et θ̇ s’annule en tout point. Donc θ est
constante et la courbe est un méridien de la surface de révolution. Sinon, a 6= 0 (et θ̇ ne s’annule pas)
et donc 1/r(t) ≤ b/

√
|a| est bien une fonction bornée.

(d) Si γ(t) est une géodésique de la pseudo-sphère qui n’est pas bornée, alors elle doit s’approcher
arbitrairement de l’axe de rotation, donc r(t)→ 0 (pour t→∞) et par le point (c) on en déduit que
γ doit être un méridien.

Remarque. Le résultat qui dit que pour les géodésiques qui ne sont pas des méridiens sur les surfaces de
révolutions la quantité r2(t)θ̇(t) est constante s’appelle le théorème de Clairault . Une quantité qui est constante
sur les solutions d’un système d’équations différentielles ordinaires s’appelle parfois une intégrale première de ce
système. Donc r2(t)θ̇(t) est une intégrale première de l’équation des géodésiques sur une surface de révolution.
Ce phénomène est lié à l’existence d’un groupe de symétries (la surface est par construction invariante par
rotation autour de l’axe). Lorsque on connaît un nombre suffisant d’intégrales premières, on peut complètement
résoudre un système différentiel et on dit que le système est totalement intégrable. Le point (b) de l’exercice
nous dit que c’est le cas ici.
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