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Objectifs. Cette série a pour but d’explorer la courbure des surfaces et les différentes notions qui
apparaissent dans cette théorie; et comprendre comment calculer ces courbures.

A. Exercices standards.

Exercice 12.1. Prouver que si v est une courbe biréguliére de classe C? qui est géodésique d'une
surface coorientée S, alors la torsion de vy (en tant que courbe dans R?) coincide au signe prés avec la
torsion géodésique de cette courbe (ce résultat explique la terminologie de torsion géodésique).

La réciproque de cet énoncé est-elle valable (i.e. est-ce quune courbe sur une surface telle que la
torsion géodésique est égale a la torsion est toujours une géodésique de cette surface) ?

Indication. Dans cet exercice il est utile de comparer les équations de Darboux et de Serret-Frenet pour la
courbe 7.

Solution 12.1. Notons v la coorientation de la surface, et notons pour simplifier la restriction de v &
la courbe 7 par v(t) = v(y(t)). Ecrivons les équations de Darboux et celles de Serret-Frenet pour la
courbe 7 :

vT = kep+kav, T = &N,
v =k, T+1yp et %N =—-—xkT + 7B,
Th =k, T -1y +B =-7N.

Si 7y est géodésique, alors sa courbure géodésique k4 est nulle et la premiére équation implique que
v = £N, (le vecteur normal principal de ), et quitte & changer le choix de la co-orientation (i.e.
remplacer v par —v), nous pouvons supposer que v(t) = N,.

Les équations ci-dessus impliquent alors que k = k4 et que p = B, (le vecteur binormal de ), par
conséquent 7 = £7,.

La réciproque n’est pas valable. Par exemple si la surface S est un plan, alors la torsion de toute
courbe biréguliére v tracée sur S est nulle. Le vecteur v normal & S est constant, donc la torsion
géodésique de vy est également nulle (car 7,4(t) = (&, u) = 0). Les deux torsions coincident (elles sont
nulles), pourtant v n’est pas une géodésique (dans ce cas y n’est méme jamais une géodésique puisque
la courbe doit étre biréguliére et les géodésiques d’un plan sont des droites).

Exercice 12.2. Calculer la courbure moyenne et la courbure de Gauss du cylindre circulaire droit
C C R3 défini par I'équation 22 + y? = a?. (Peut-on prédire ces valeurs sans faire de calculs ?).

Solution 12.2. La courbure de Gauss est le produit des courbures principales et la courbure moyenne
en est la demi-somme. On sait aussi que les directions principales (i.e. les directions des courbures
principales) sont orthogonales.

Il est intuitivement clair que toutes les courbures normales d’un cylindre circulaire droit ont le méme
signe (négatif ou positif selon le choix de la co-orientaton). Par chaque point du cylindre il passe une
droite, donc la courbure minimale (ou maximale) est nulle. L’autre courbure principale est celle de
la direction orthogonale a la droite, c’est-a-dire la courbure du cercle de rayon a. Cette courbure est
égale & :I:% (le signe dépendant de l'orientation). Par conséquent la courbure de Gauss est K = 0 et la
courbure moyenne est H = j:i.



Voyons Papproche analytique. Une paramétrisation du cylindre est 1(u,v) = (acos(u),asin(u),v)
(avec (u,v) € Q =[0,27] x R). La base du plan tangent adaptée a cette paramétrisation est

0 0
bi(u,v) = 9% _ (—asin(u), acos(u),0), bo(u,v) = 9% =(0,0,1)
ou ED)
et b b
1 X D2 .
v(u,v _— cos(u),sin(u),0).
(1,0) = ey = (cos(u) sin(u). 0)
On constate que by et by sont des vecteurs propres de 'application de Weingarten L = dv, en effet
ov i 1
L(b;) = dv(by) = Bur (—sin(u), cos(u),0) = p by
et 9
v
L(bs) =dv(by)=—=0=0-b
(b2) = dv(by) By 2

Donc dans la base {by, bz} du plan tangent 7,C (en un point quelconque du cylindre), la matrice de
I’application de Weingarten est
1
0
t- (i o)

Par conséquent la courbure de Gauss est K = det(L) = 0 et la courbure moyenne est

1 1
H = ——Trace(L) = ——.
2 2a

Remarquons qu’on aurait pu choisir 'autre signe pour la coorientation v, dans ce cas on aurait obtenu

_ 1
H=41.

Exercice 12.3. (a) Calculer le tenseur métrique, la deuxiéme forme fondamentale et I'application de
Weingarten de ’hélicoide
Y(u,v) = (veos(u),vsin(u), u).

(b) Que valent la courbure moyenne et la courbure de Gauss de cette surface ?

Solution 12.3. (a) Le repére adapté a notre paramétrisation est donné par

by = ?;5 = (—wsin(u),v cos(u), 1)

by = Zf = (cos(u), sin(u), 0)

L by x by  (—sin(u),cos(u), —v)
N V1402

La matrice du tenseur métrique est donc

G(u,v) = < ”0”2 ’ )

Pour calculer les coefficients de la deuxiéme forme fondamentale, on calcule d’abord

82 52 32
aTZf = —v(cos(u),sin(u),0), 6ug}v = (—sin(u), cos(u),0), 50 %} = (0,0,0).




2 2 2 !
b= (GE) =0 b =GR =0 b=k = (G5 0) = e

Qu’on écrit matriciellement

1
a( 4 )
V1402 0

La matrice de I'application de Weingarten est alors

—3/2
L_—G—1H_<_ 0~y / )

v2+1 0

(b) La courbure de Gauss est

B _det(H) 1
K=dtll) = 4@ = v o

La courbure moyenne est
1
H= —iTrace(L) =0.

Exercice 12.4. Montrer que la matrice de la seconde forme fondamentale du graphe de la fonction
©:Q — R, de classe C? (ou Q est un domaine de R?) est

H = 1 <90:m: @xy)
1+ 02+ g2 \Pay Puy
Solution 12.4. Le graphe de la fonction (de deux variables) ¢ est la surface d’équation z = ¢(z,vy),
un paramétrage de cette surface est donné par ¥ (z,y) = (z,y, ¢(x,y)). Nous utiliserons pour simplifier
les notations suivantes pour les dérivées partielles

Dy D ot foRte [opte

@x:%> wyZ@, Sﬂmzw, @yy:aiyy @xy:¢yz:m~

Rappelons que la deuxiéme forme fondamentale est la forme bilinéaire symétrique dont la matrice
H = (h;;) dans la base adaptée {bq, by} de T},S est donnée par

0?1 ) — <8b,~ V)
8x¢8:cj ’ N al’j ’

hij = h(bi,b;) = (

ou v est le champ de vecteurs normal a la surface. On a

_ %W
- Ox

9y

b1 =(1,0,) et bg= a—y = (0,1, ),

donc
by x b N (_8017_802471)

v= = )
HlebQH /1+90?c+9012/




On calcule facilement que

0%y 0%y 0%

@ = (0707909337)7 8x8y = (0,0, SOg;y), W = (O,O,goyy)7 (1)
par conséquent

hy = <82¢ > <(0 0, Spa:m —Pz Py, 1)) .

0227V T
1+<px+s0y \/1+90x+<py

h12——

hao =
1+ 92+ ¢ \/1+90m+90y

et de méme

Exercice 12.5. Est-ce que la matrice de ’application de Weingarten d’une surface est toujours une
matrice symétrique ?

Solution 12.5. L’application de Weingarten est un endomorphisme autoadjoint L, : T,,S — T,,S du
plan tangent a une surface. Sa matrice dépend du choix d’une base de 7},S, si cette base est orthonormée
alors la matrice de L, est en effet symétrique, mais ca n’est pas le cas en général. L’exemple de
I'hélicoide montre que en effet la matrice de L, peut étre non symétrique.

Exercice 12.6. Soit p un point non ombilique d’une surface réguliére de classe C2. On note vy et vo
les vecteurs unités de 7},S dans les direction principales. Prouver la formule d’Euler, qui dit que la
courbure normale du vecteur vy = cos(0)vy + sin(f)vy € T),S est donnée par

En(ve) = k1 cos(0)? + kg sin(6)?,

ou k1, ko sont les courbures principales de S en p.

En déduire que k1 et k3 sont les valeurs minimale et maximale de la courbure normale de S au point
.

(On rappelle qu'un point de la surface S est dit ombilique si les deux courbures principales en ce point
coincident : k; = ko).

Solution 12.6. Les directions principales en un point non ombilique de la surface S sont les directions
des vecteurs propres de I'application de Weingarten L,. Comme L, est autoadjointe, ces directions
sont orthogonales. Donc {vy, va} est une base orthonormée de 7),S.

Le vecteur vy est de norme 1, donc on a d’une part

= h(vg, Vo)
= h (cos(0)vy + sin(0)va, cos(f)vy + sin(0)vs)
= cos(0)?h(v1,v1) + 2sin() cos(0)h(v1, va) + sin(0)*h(va, va)

D’autre part
h(VZ',Vj) = _<L(Vi)7vj> = <kivivvj> = kldl]

et donc
kn(vg) = k1 cos(8)? + ko sin()2.



B. Exercice supplémentaire (sur les géodésiques des surfaces de révolution).

Exercice 12.7. Le but est de cet exercice est de déterminer toutes les géodésiques des surfaces de
révolution. On considére la surface de révolution 1 : Q = [0,27] x I — S C R3 donnée par

¥(0,s) = (r(s)cos(d),r(s)sin(), z(s))

(a) On considére une courbe y(t) (¢ € J), de classe C? tracée sur la surface S. Montrer que pour tout
tcJona

Op, _d (o
0. 2) = (350,
G0, 2 = 4 (2
ou le point signifie la dérivée par rapport au paramétre t.
(b) Montrer que si y(t) est une géodésique, alors les quantités

P20 et (r@®)0(1)* +7(t)% + 2(t)?

sont constantes (indépendante de t).
(¢) Montrer que la fonction ¢ +— 1/7(t) est bornée pour toute géodésique qui n’est pas un méridien de
la surface de révolution.

(d) Montrer que la hauteur de toute géodésique dans la pseudo-sphére qui n’est pas un méridien est
une courbe bornée dans R3.

Indication pour (c). On peut calculer la vitesse et l'accélération de vy en coordonnées cylindriques.

Solution 12.7. (a) La courbe v peut s’écrire

V() = 9(0(t), s(t)) = (r(s(t)) cos(0(t)), r(s(t)) sin(0(t)), 2(s(t))) -

Dans la suite de 'exercice, on écrit pour simplifier 7(t) pour 7(s(t)) et z(t) pour z(s(t)), notons toutefois

Lo drds oo dzds o
que 7 = —-— et £=—-—. Onaalors
d cos(6) ~ [—sin(0) 0
f’yzﬁfy:'f”- sin(@) | +70- | cos(d) | +2-{0
0 0 1
En dérivant une seconde fois, on a
2 cos(6) ' ) — sin(6) _ cos(6) 0
§=—sy=7-|sin(@) | + (200 +r0) | cos(d) | —r6?- |sin(d) | +2-
dt?
0 0 0 1
D’autre part on a
— sin(6)
% =by=r- cos ()
00 0

et donc o ;
. _ . o o
(3(t), %> =r-(2r0+1r) = 7 (r 9) )

(b) Si vy est géodésique, alors par le point (a)

90 = 50,2 =0,



donc r20 est constante. D’autre part, on sait que la vitesse de 7y est constante, par conséquent
15(0)|12 = 7(t)% + (r(t)6(t))* + 2(t)> = constante

(le vecteur 5(t) est calculé plus haut).

(c) Le résultat en (b) nous dit que pour toute géodésique sur la surface de révolution S il existe des
constantes a et b telles que . .
0 = a et (r0)? +7*+ 22 =0

Notons pour la suite que b > 0. On a donc

a’ 7\ 2 2 2
=(rf) =b—17°—2°<b.

= (rd) <

Deux cas se présentent. Si 6 ’annule en un point, alors a = 0 et 6 ’annule en tout point. Donc 6 est

constante et la courbe est un méridien de la surface de révolution. Sinon, a # 0 (et  ne s’annule pas)
et donc 1/7(t) < b/+/|a| est bien une fonction bornée.

(d) Si v(t) est une géodésique de la pseudo-sphére qui n’est pas bornée, alors elle doit s’approcher
arbitrairement de ’axe de rotation, donc r(t) — 0 (pour ¢ — o0) et par le point (c) on en déduit que
~ doit étre un méridien.

Remarque.  Le résultat qui dit que pour les géodésiques qui ne sont pas des méridiens sur les surfaces de
révolutions la quantité r2(t)€‘(t) est constante s’appelle le théoréme de Clairault . Une quantité qui est constante
sur les solutions d’un systéme d’équations différentielles ordinaires s’appelle parfois une intégrale premiére de ce
systéme. Donc 72 (t)@(t) est une intégrale premiére de ’équation des géodésiques sur une surface de révolution.
Ce phénomene est lié a l'existence d’un groupe de symétries (la surface est par construction invariante par
rotation autour de 'axe). Lorsque on connait un nombre suffisant d’intégrales premiéres, on peut complétement
résoudre un systéme différentiel et on dit que le systéme est totalement intégrable. Le point (b) de l'exercice
nous dit que c’est le cas ici.



