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A. Exercices standards.

Exercice 11.1. Soit v(s) € R? (a < s < b) une courbe réguliére au sens de Frenet et € > 0 une (petite)
constante. La réunion des cercles de rayons e centré en ~y(s) et contenus dans le plan orthogonal a 4(s)
est une surface. On l'appelle un e-tube autour de v (ainsi un cylindre ou un tore sont des exemples
simples de tubes.)

a) En supposant que 7 est paramétrisée naturellement et biréguliére, donner un paramétrage (s, )
du e-tube (on utilisera le repére de Frenet).

b) Calculer le tenseur métrique de ce paramétrage.
¢) Montrer que l'aire de ce tube est donnée par

A =2nel

ol L est la longueur de .

d) Observer que cette formule est surprenante : 1'aire du tube ne dépend que de ¢ et de la longueur
de la courbe v au centre du tube. Donner néanmoins une explication intuitive de ce phénoméne.

Solution 11.1. a) Un paramétrage ¢ (s, #) du e-tube est donné par
P(s,0) =(s) +ecosf - N(s) +esinf - B(s),

ou {T,N,B} est le repére de Frenet de 7, avec comme domaine de paramétrisation  := {(s,0) |
a<s<b 0<6<2r}.

b) Le repére adapté en chaque point de cette paramétrisation est donné par :

by(s,0) = (g—f = 4(s) + ecos(f)N + esin()B

=T+ ecos(f) (—k(s)T + 7(s)B) — esin(0)7(s)N

= (1 —ecos(f)k(s))T — esin(0)7(s)N + e cos(0)7(s)B
ba(s,0) = (Zzg = —esin(0)N + e cos(0)B.

(On a utilisé les formules de Serret-Frenet). Le tenseur métrique est alors donné par G = (g;5) =

((b;, b)) :
G(s,0) = ( ((1 — en(s) 0289)2+ (67’(5))2) e27(s) )
e°7(s) 2
Et en particulier
det G(s,0) =€ (1 — er(s)cosh).

Remarquer que le tenseur métrique dépend de la courbure et de la torsion de v, mais son déterminant
ne dépend que de la courbure.



c) L’aire de ce tube est alors donnée par

b 27 b 27
A= / / Vdet G dsdf = / / e (1 —er(s)cosb) dsdfd = 2me(b— a)
s=a J0=0 s=a J0=0

car pour tout s on a
2
/ e (1 —er(s)cosb)df = 2me.
0=0
On a donc A = 27meL, ou L = (b — a) est la longueur de 7 (qui est paramétrée naturellement
d) Un e-tube se présente comme un tuyau souple que ’on tord pour que son centre suive la courbe 7.

Lors de cette déformation certaines parties du tuyau sont étirées et d’autre sont contractées. L’aire
des parties étirées s’accroit et ’aire des parties contractées décroit. Les deux effets se compensent.

Exercice 11.2. Soit v : I — S? une courbe simple de classe C! tracée sur la sphére unité, on suppose
~ paramétrée naturellement. On considére le cone C de centre 0 engendré par cette courbe, c’est a dire
I’ensemble des demi-droites d’origine 0 et passant par un point de 7.

(a) Donner une paramétrisation de C comme surface réglée et montrer que C \ {0} est une sous-variété

de R3.
(b) Calculer le tenseur métrique pour cette paramétrisation.

(c) Montrer que C \ {0} est localement isométrique au plan euclidien.

Solution 11.2. Remarquons d’abord bien quelles sont les hypothéses sur la courbe v. On suppose
qu’elle est de classe C1 et que pour tout t € I on a ||y(u)|| = ||¥(u)]| = 1, et de plus v : I — R3 est
injective (c’est ce que signifie ’hypothése que la courbe est simple). Le cone C est ’'ensemble des demi-
droites d’origine 0 et passant par un point v(u). Une telle demi-droite se paramétrise par v — vy(u),
avec v > 0. Une paramétrisation du coéne sur v est donc donnée par

P:I xR, >R u,v) = vy(u).

La base adaptée du plan tangent au cone au point ¥ (u,v) est la base

o . oY
bl(uvv) ~ ou 'U’Y(u)a b2(u7v) v fy(u)
La condition que [|y(u)|| = 1 implique que 7(u) est orthogonal y(u), on a donc

g12(u, v) = (b1(u,v), ba(u, v)) = (vy(u),y(u)) = 0.
On a aussi

I

g11(u,v) = [br(u,0)[* = oy(W)|> =v*,  ga2(u,v) = [[ba(u, v)|* = [y(u)]* =1

On a donc le tenseur métrique :

2
G(u,v) = (% (1)> ., Clest-a-dire  ds® = v?du® + dv?

Nous voyons que c’est le méme tenseur métrique que celui du plan euclidien en coordonnées polaires
(en remplagant u par € et v par ) donc si on pose h(u,v) = (z,y) avec

z(u,v) =vcos(u), y(u,y)=wvsin(u),



alors on vérifie facilement que
dz? + dy? = v2du® + dv? = ds?

On a donc trouvé un systéme de coordonnées locales sur le cone (privé de son sommet) dans lequel le
tenseur métrique est égal au tenseur métrique euclidien, par conséquent cette surface est localement
isométrique au plan euclidien.

Exercice 11.3. Une courbe v : I — S de classe C? tracée sur une surface S C R? est une géodésique
de cette surface si son accélération est normale & la surface pour tout ¢ (c’est a dire 4(t) L TS pour
tout t € 1.)

Démontrer les affirmations suivantes :

(a) La vitesse de toute géodésique est constante.

(b) Les géodésiques (non constante) d’une sphére sont les grand cercles de cette sphére paramétrés a
vitesse constante.

(c) Si~y est un méridien d’une surface de révolution S et -y est parcourue a vitesse constante, alors 7y
est une géodésique.

(d) A quelle condition un paralléle d’une surface de révolution est-elle une géodésique ?

Indication pour (b) : Soit vy(t) une géodésique d’une sphere de centre c. Vérifier que le vecteur m :=
(v(t) — ¢) x ¥ est constant, puis considérer le produit scalaire (y(t) —c,m).

Solution 11.3. (a) Soit v : I — S une géodésique de la surface S. Alors 7(¢) est orthogonal & tout
vecteur € € TS, en particulier (¥(¢),¥(t)) = 0, par conséquent

d, . c i
ZIH@I* =26, 9(®) =0,
et donc [|¥(t)|| est constante.

(b) Remarquons que l'affirmation en (b) est intuitivement claire : En effet si v : I — S? un grand
cercle, alors 4 est normal a la sphére car I'accélération d’un cercle (parcouru a vitesse constante)
est colinéaire a son rayon. Or le centre d’'un grand cercle est le méme que le centre de la sphére,
donc l'accélération d’'un grand cercle est aussi normale a la sphére.

Pour démontrer rigoureusement ’affirmation, on suit I'indication donnée. On suppose pour simpli-
fier que le centre c est 'origine de R3. Soit donc 7 une géodésique sur la sphére et posons m = v x 7.
On remarque d’abord que m est non nul car y(t) et 4(¢) sont des vecteurs non nuls orthogonaux
entre eux pour tout t. D’autre part, on sait que (y,m) = 0. Finalement, m est constant car

m=yXy+yxy=v9x+v=0.

L’égalité v x 4 = 0 vient du fait que v est géodésique et que tout vecteur orthogonal au plan
tangent a la sphére en un point x est colinéaire a x.
On a montrés que

v(t) € {z | {z,m) = 0}

qui n’est autre chose qu’un plan passant par l'origine et donc - est un grand cercle de la sphére.



(¢) Soit S une surface de révolution (par exemple la surface de révolution du graphe y = f(z) autour
de 'axe Ox). On peut paramétriser cette surface par ¥(u,v) = (v, f(v) cos(u), f(v)sin(u)). Les
méridiens de S sont les courbes sur S donnée par l'intersection d’un plan contenant ’axe Ox avec
S, c’est a dire les courbes pour lesquelles u est constant, ce qui implique que leur accélération est
normale & un des vecteurs de base du tangent. Ces courbes ont seulement une accélération normale
a la surface car on peut regarder ces courbes comme des courbes dans le plan, et leur accélération
est orthogonale & leur dérivée, donc normale a ’autre vecteur de base du tangent.

(d) Les paralléles d’une surface de révolution qui sont des géodésiques sont les cercles qui passent par
les points critiques de la fonction f. En effet, en un point on f’ s’annule, on aura by = (1,0,0) et
donc 'accélération du paralléle sera normale & by. De plus, le paralléle est dans un plan orthogonal
a I'axe Ox et 'accélération du paralléle, qui est un cercle, est colinéaire au rayon de ce cercle, or
b, est tangente au cercle, donc 'accélération d’un paralléle passant par un point critique de f est
une géodésique.

Exercice 11.4. (a) On note H C R3 I’hélicoide d’équation zsin(z) = ycos(z) et C C R? le cylindre
circulaire droit d’équation z? 4+ y? = 1. Montrer que l'intersection de ces deux surfaces est la réunion
disjointe des images des deux hélices 7+ : R — R? suivantes :

v+ (t) = (cos(t),sin(t),t), v—(t) = (= cos(t), —sin(t), 1),

C’est-a-dire
HAC =7 (R)U7-(R) et 4 (R)N7-(R) = 0.

(en particulier 'intersection H N C posséde deux composantes connexes).

(b) v+ (t) est-elle une géodésique du cylindre ?
(c) v+ (t) est-elle une géodésique de 1’hélicoide ?

Solution 11.4. (a) On prouve d’abord que v4(t) C H NC pour tout ¢t. Cela se fait directement en
vérifiant que pour tout ¢ € R, le point (x,y, z) = (cost,sint,t) vérifie les équations des deux surfaces.
On a en effet

xsin(z) — ycos(z) = cos(t) sin(t) — sin(t) cos(t) = 0,

et
22 + 9% = cos?(t) + sin®(t) = 1.

On montre que v_(t) C HNC de la méme maniére, ce qui prouve que

Pour montrer 'inclusion inverse, on doit montrer qu’un point arbitraire (x,y,t) € H N C est situé sur
I'une au lautre des deux courbes. Si le point (z,y,z) € H, alors on a xsin(z) = ycos(z), donc il
existe A € R tel que x = Acos(z) et y = Asin(z). Mais d’autre part (z,y,2) € C, ce qui signifie que
2 + 3% =1 et donc A\ = £1.

Nous avons montré que tout point (x,y,t) € H NC s’écrit ou bien (cos(z),sin(z), z) = y4(z),

ou bien (—cos(z), —sin(z), z) = v_(2).

Par ailleurs, il est clair que v4+(R) Ny—(R) = () car sinon il existerait t,u € R tels que v4(t) = v—(u),
alors t = u et cos(u) = — cos(u) et sin(u) = —sin(u), ce qui est impossible.

(b) La réponse est positive, v+ (t) est une géodésique du cylindre. Prouvons le cas de vy(t) = v (),
I’équation du cylindre est f(z,y,2) = 22 +y?>—1=0et on a Vf(z,y, z) = (2z,2y,0). Pour vérifier que
7(t) est une géodésique du cyclindre, on peut vérifier que 4(t) est orthogonal au plan tangent 7’,;C.
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ou, de fagon équivalente on peut vérifier que 4(¢) est colinéaire au gradient V f(y(t)) (car le gradient
est orthogonal au plan tangent). Or nous avons

4(t) = (—cos(t), —sin(t), 0) et Vi(y(t) = (22,2y,0) = (2cos(t), 2sin(t), 0).

Ces deux vecteurs sont colinéaires pour tout ¢, ce qui implique que %(t) est normal au cylindre et donc
v est une géodésique du cylindre. Le raisonnement est le méme pour ~v_(t).

(c) La réponse est négative, v4(t) n’est pas une géodésique de I'hélicoide. L’équation de 1'hélicoide
est g(x,y,z) = wsin(z) — ycos(z) et on a Vg(z,y,2) = (sin(z), — cos(z), z cos(z) + ysin(z)). On voit
trés facilement que les vecteurs

4(t) = (— cos(t), —sin(t), 0) et Vg(~(t)) = (sin(t), — cos(t), 1)

ne sont pas colinéaires (en fait ils sont orthogonaux). Donc 7 n’est pas une géodésique de 1’hélicoide.
Le raisonnement est le méme pour y_(t)

Exercice 11.5. Calculer explicitement I’application de Gauss v : £ — S? de 'ellipsoide donné sous
forme implicite par

2 2 2
5:{($,y,z)€R3 ] %—f—z—z—l—%:l}.
Il s’agit donc de donner une formule pour v = v(z,y, z) pour chaque point (z,y,2) € £ (on suppose
a, b, ¢ non nuls).
Que remarque-t-on dans le cas ot a = b= c =1 (i.e. lorsque £ est la sphére unité).

Solution 11.5. Ona & = {(z,y,2) € R? | f(z,y,2) = 1}, avec f(z,y,2) = ﬁ—;—l—g—;—l—i—;. L’application
de Gauss est donc définie (au signe prés) par

v £,£71
V(xvywz)::l: vf =+ (Zz b2262) 5
H fH ‘/zj_l_%_{_ij

On remarque que orsque £ = S? est la sphére unité, Iapplication de Gauss est ou bien I’application
identité ou bien I’application antipodale de S? suivant la co-orientation choisie.

Exercice 11.6. Soit v : I — S une courbe réguliére de classe C? tracée sur une surface réguliére
co-orientée S C R3. On appelle repére de Darboux le long de ~ relatif a la surface S le repére
mobile orthonormé {v(t), T,(t), u(t)} ou T, (t) = ﬁy(t) est le vecteur tangent unitaire a v, v(t)
est 'application de Gauss de S évaluée en y(t) et u(t) = v(t) x T, (t).

On note K, (t) le vecteur de courbure de 7. On rappelle que la courbure normale et la courbure
géodésique de v sont les fonctions du paramétre ¢ définies respectivement par

kn(t) = (K (8),v(t)) et ky(t) = (Ky(t), u(?))-
(a) Montrer que (t)? = ky(t)% + k,y(t)?, olt & est la courbure de 7 (en tant que courbe de R3).

(b) Prouver que 7 est géodésique si et seulement si sa vitesse est constante et sa courbure géodésique
est nulle.

(c) Calculer le repére de Darboux, la courbure géodésique et la courbure normale du petit cercle sur
la sphére unité S? défini par les équations 22 +y? + 22 =1let z =c (ot =1 < c < 1).



Solution 11.6. (a) Puisque le repére de Darboux est un repére orthonormé, on a
K = (K, v)v + (K, T)T + (K, p)p.

Nous avons (K, T) = 0 (le vecteur de courbure est orthogonal a %), donc K = (K, v)v + (K, u)u, par
conséquent
R° = K[ = (K, 0) + (K, 1) = ka(1)” + K (1)°

(b) Par définition, une courbe v de classe C? tracée sur la surface est géodésique si et seulement si son
accélération 4(t) est orthogonale au plan tangent 7’4 S pour tout ¢. En développant + dans le repére
de Darboux, on voit que cela revient a dire que

En utilisant la formule de I'accélération 5 = VT, (t) + V2K, (t), on obtient
V=V(T,T)=0 et kyt)= (K, up=0,

car p L Tet K1 T.

(c) Pour la question (c), on choisit (par exemple) la coorientation donnée par la normale extérieure.
Dans ce cas I'application de Gauss v de la sphére unité est I'identité v : S> — S?. La courbe considérée
(le petit cercle) est paramétrisée par v(t) = (acos(t),asin(t),c), avec a = V1 — ¢? (cette condition
garanti que v(¢) € S?). On a alors par des calculs standards :

V.—a, T()= %1@) — (—sin(t), cos(t),0), K(t) = %T(t) _ —2(cos(t),sin(t),0).
Le repére de Darbous est
u(t) = A(t) = (acos(t).asint), o).
() = g& — (= sin(t), cos(?), 0),

Le vecteur de courbure est

on a donc

Remarques : (i) On vérifie facilement que

2 2 2
9 9 ¢ _a"+c 1 9
kn(t) + kg(t) =1+ 22 2 ||KH

(¢a n’était pas demandé mais il peut étre rassurant de vérifier que nos calculs sont corrects)

(ii) On peut trouver étrange que la courbure normale d’une courbe sur la sphére soit négative. Si on
préfére que la courbure normale d’une courbe sur une surface convexe soit positive, il faut prendre la
co-orientation associée & la normale intérieure et non la normale extérieure.




Exercice 11.7. On continue avec la situation et les notations de I'exercice précédent, et on définit la
torsion géodésique de ~ par
1 .
79(t) = v (P (1), 1(D)).
(c) Calculer la torsion géodésique du petit cercle sur S? défini {z = c}.

(d) Prouver que le repére de Darboux vérifie les équations différentielles suivantes :

%T = kgp+ kpv,
v =k, T+ 1yp,
s =—k,T— 140,

Solution 11.7. (c) Les calculs précédents nous disent que v(t) = v(t) = (acos(t), asin(t), c) et p(t) =
—(ccos(t), esin(t),0). On a donc ©(t) = 4(t) = (—asin(t),acos(t),0). On a aussi V, = ||¥(t)|| = a,
donc la torsion géodésique d’un cercle sur une sphére est nulle, on a en effet

73(6) = 1 (), m(t)) = 0.
(d) On remarquera l’analogie de ces équation avec les équations de Serret-Frenet. On observe que la
premiére équation vient de la définition de la courbure normale et de la courbure géodésiques :
tT =K = kyp+ kyv.
La deuxiéme équation vient du développement de & dans le repére de Darboux (qui est orthonormé)
v=(wviv+ @ T)T+ @ pup

et des égalités '
<"/7V>:07 <1)7T>:_<V’T>:_V’7kn et <D7IJ’>:VW’T9'

La derniére équation vient du développement de fi

et des égalités

</:l'v V> = _<"/7:u’> = _V’)’Tg7 (H’? T> = _<H'7 T> = _V’Ykg et </:L7H'> =u

B. Exercice supplémentaire

Exercice 11.8. Lire les chapitres 3 et 4 du livre La Science et I’Hypothése (de Henri Poincaré, 1902).
Disponible ici en version électronique :
https://www.ebooksgratuits.com/pdf/poincare_science_hypothese.pdf


https://www.ebooksgratuits.com/pdf/poincare_science_hypothese.pdf

C. Illustrations

Figure 1: e-tube autour d’une courbe.

Figure 2: Cone généralisé.

Figure 3: Intersection d’'une demi-hélicoide et d’un cylindre circulaire droit



Figure 4: Pavage hyperbolique du disque de Poincaré. Tous les triangles ont la méme aire.

Figure 5: Cette représentation par M.C. Escher du plan hyperbolique —appelée Circle Limit ITT- date de 1959;
Partiste avait fait la connaissance du mathématicien H.C. Coxeter, qui lui avait envoyé un article contenant une
figure de pavage hyperbolique.



Figure 6: Cette sculpture est 'ocuvre du sculpteur A. Duarte et date de 1973. On peut ’admirer au bout de
la jetée & Ouchy. Elle est constituées de plusieurs surfaces réglées, ce qui semblait un théme a la mode a cette
époque..
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