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A. Exercices standards.

Exercice 11.1. Soit γ(s) ∈ R3 (a ≤ s ≤ b) une courbe régulière au sens de Frenet et ε > 0 une (petite)
constante. La réunion des cercles de rayons ε centré en γ(s) et contenus dans le plan orthogonal à γ̇(s)
est une surface. On l’appelle un ε-tube autour de γ (ainsi un cylindre ou un tore sont des exemples
simples de tubes.)

a) En supposant que γ est paramétrisée naturellement et birégulière, donner un paramétrage ψ(s, θ)
du ε-tube (on utilisera le repère de Frenet).

b) Calculer le tenseur métrique de ce paramétrage.

c) Montrer que l’aire de ce tube est donnée par

A = 2πεL

où L est la longueur de γ.

d) Observer que cette formule est surprenante : l’aire du tube ne dépend que de ε et de la longueur
de la courbe γ au centre du tube. Donner néanmoins une explication intuitive de ce phénomène.

Solution 11.1. a) Un paramétrage ψ(s, θ) du ε-tube est donné par

ψ(s, θ) = γ(s) + ε cos θ ·N(s) + ε sin θ ·B(s),

où {T,N,B} est le repère de Frenet de γ, avec comme domaine de paramétrisation Ω := {(s, θ) |
a ≤ s ≤ b, 0 ≤ θ ≤ 2π}.

b) Le repère adapté en chaque point de cette paramétrisation est donné par :

b1(s, θ) =
∂ψ

∂s
= γ̇(s) + ε cos(θ)Ṅ + ε sin(θ)Ḃ

= T + ε cos(θ) (−κ(s)T + τ(s)B)− ε sin(θ)τ(s)N

= (1− ε cos(θ)κ(s))T− ε sin(θ)τ(s)N + ε cos(θ)τ(s)B

b2(s, θ) =
∂ψ

∂θ
= −ε sin(θ)N + ε cos(θ)B.

(On a utilisé les formules de Serret-Frenet). Le tenseur métrique est alors donné par G = (gij) =
(〈bi,bj〉) :

G(s, θ) =

( (
(1− εκ(s) cos θ)2 + (ετ(s))2

)
ε2τ(s)

ε2τ(s) ε2

)
Et en particulier √

detG(s, θ) = ε (1− εκ(s) cos θ) .

Remarquer que le tenseur métrique dépend de la courbure et de la torsion de γ, mais son déterminant
ne dépend que de la courbure.
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c) L’aire de ce tube est alors donnée par

A =

∫ b

s=a

∫ 2π

θ=0

√
detGdsdθ =

∫ b

s=a

∫ 2π

θ=0
ε (1− εκ(s) cos θ) dsdθ = 2πε(b− a)

car pour tout s on a ∫ 2π

θ=0
ε (1− εκ(s) cos θ) dθ = 2πε.

On a donc A = 2πεL, où L = (b− a) est la longueur de γ (qui est paramétrée naturellement

d) Un ε-tube se présente comme un tuyau souple que l’on tord pour que son centre suive la courbe γ.
Lors de cette déformation certaines parties du tuyau sont étirées et d’autre sont contractées. L’aire
des parties étirées s’accroît et l’aire des parties contractées décroît. Les deux effets se compensent.

Exercice 11.2. Soit γ : I → S2 une courbe simple de classe C1 tracée sur la sphère unité, on suppose
γ paramétrée naturellement. On considère le cône C de centre 0 engendré par cette courbe, c’est à dire
l’ensemble des demi-droites d’origine 0 et passant par un point de γ.

(a) Donner une paramétrisation de C comme surface réglée et montrer que C \ {0} est une sous-variété
de R3.
(b) Calculer le tenseur métrique pour cette paramétrisation.

(c) Montrer que C \ {0} est localement isométrique au plan euclidien.

Solution 11.2. Remarquons d’abord bien quelles sont les hypothèses sur la courbe γ. On suppose
qu’elle est de classe C1 et que pour tout t ∈ I on a ‖γ(u)‖ = ‖γ̇(u)‖ = 1, et de plus γ : I → R3 est
injective (c’est ce que signifie l’hypothèse que la courbe est simple). Le cône C est l’ensemble des demi-
droites d’origine 0 et passant par un point γ(u). Une telle demi-droite se paramétrise par v 7→ vγ(u),
avec v ≥ 0. Une paramétrisation du cône sur γ est donc donnée par

ψ : I × R+ → R3, ψ(u, v) = vγ(u).

La base adaptée du plan tangent au cône au point ψ(u, v) est la base

b1(u, v) =
∂ψ

∂u
= vγ̇(u), b2(u, v) =

∂ψ

∂v
= γ(u)

La condition que ‖γ(u)‖ = 1 implique que γ̇(u) est orthogonal γ(u), on a donc

g12(u, v) = 〈b1(u, v),b2(u, v)〉 = 〈vγ̇(u), γ(u)〉 = 0.

On a aussi

g11(u, v) = ‖b1(u, v)‖2 = ‖vγ̇(u)‖2 = v2, g22(u, v) = ‖b2(u, v)‖2 = ‖γ(u)‖2 = 1

On a donc le tenseur métrique :

G(u, v) =

(
v2 0
0 1

)
, c’est-à-dire ds2 = v2du2 + dv2

Nous voyons que c’est le même tenseur métrique que celui du plan euclidien en coordonnées polaires
(en remplaçant u par θ et v par r) donc si on pose h(u, v) = (x, y) avec

x(u, v) = v cos(u), y(u, y) = v sin(u),
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alors on vérifie facilement que
dx2 + dy2 = v2du2 + dv2 = ds2

On a donc trouvé un système de coordonnées locales sur le cône (privé de son sommet) dans lequel le
tenseur métrique est égal au tenseur métrique euclidien, par conséquent cette surface est localement
isométrique au plan euclidien.

Exercice 11.3. Une courbe γ : I → S de classe C2 tracée sur une surface S ⊂ R3 est une géodésique
de cette surface si son accélération est normale à la surface pour tout t (c’est à dire γ̈(t) ⊥ Tγ(t)S pour
tout t ∈ I.)

Démontrer les affirmations suivantes :

(a) La vitesse de toute géodésique est constante.

(b) Les géodésiques (non constante) d’une sphère sont les grand cercles de cette sphère paramétrés à
vitesse constante.

(c) Si γ est un méridien d’une surface de révolution S et γ est parcourue à vitesse constante, alors γ
est une géodésique.

(d) A quelle condition un parallèle d’une surface de révolution est-elle une géodésique ?

Indication pour (b) : Soit γ(t) une géodésique d’une sphère de centre c. Vérifier que le vecteur m :=
(γ(t)− c)× γ̇ est constant, puis considérer le produit scalaire 〈γ(t)− c,m〉.

Solution 11.3. (a) Soit γ : I → S une géodésique de la surface S. Alors γ̈(t) est orthogonal à tout
vecteur ξ ∈ Tγ(t)S, en particulier 〈γ̈(t), γ̇(t)〉 = 0, par conséquent

d

dt
‖γ̇(t)‖2 = 2〈γ̈(t), γ̇(t)〉 = 0,

et donc ‖γ̇(t)‖ est constante.

(b) Remarquons que l’affirmation en (b) est intuitivement claire : En effet si γ : I → S2 un grand
cercle, alors γ̈ est normal à la sphère car l’accélération d’un cercle (parcouru à vitesse constante)
est colinéaire à son rayon. Or le centre d’un grand cercle est le même que le centre de la sphère,
donc l’accélération d’un grand cercle est aussi normale à la sphère.

Pour démontrer rigoureusement l’affirmation, on suit l’indication donnée. On suppose pour simpli-
fier que le centre c est l’origine de R3. Soit donc γ une géodésique sur la sphère et posonsm = γ×γ̇.
On remarque d’abord que m est non nul car γ(t) et γ̇(t) sont des vecteurs non nuls orthogonaux
entre eux pour tout t. D’autre part, on sait que 〈γ,m〉 = 0. Finalement, m est constant car

ṁ = γ̇ × γ̇ + γ × γ̈ = γ × γ̈ = 0.

L’égalité γ × γ̈ = 0 vient du fait que γ est géodésique et que tout vecteur orthogonal au plan
tangent à la sphère en un point x est colinéaire à x.

On a montrés que
γ(t) ∈ {x | 〈x,m〉 = 0}

qui n’est autre chose qu’un plan passant par l’origine et donc γ est un grand cercle de la sphère.
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(c) Soit S une surface de révolution (par exemple la surface de révolution du graphe y = f(x) autour
de l’axe Ox). On peut paramétriser cette surface par Ψ(u, v) = (v, f(v) cos(u), f(v) sin(u)). Les
méridiens de S sont les courbes sur S donnée par l’intersection d’un plan contenant l’axe Ox avec
S, c’est à dire les courbes pour lesquelles u est constant, ce qui implique que leur accélération est
normale à un des vecteurs de base du tangent. Ces courbes ont seulement une accélération normale
à la surface car on peut regarder ces courbes comme des courbes dans le plan, et leur accélération
est orthogonale à leur dérivée, donc normale à l’autre vecteur de base du tangent.

(d) Les parallèles d’une surface de révolution qui sont des géodésiques sont les cercles qui passent par
les points critiques de la fonction f . En effet, en un point où f ′ s’annule, on aura b1 = (1, 0, 0) et
donc l’accélération du parallèle sera normale à b1. De plus, le parallèle est dans un plan orthogonal
à l’axe Ox et l’accélération du parallèle, qui est un cercle, est colinéaire au rayon de ce cercle, or
b2 est tangente au cercle, donc l’accélération d’un parallèle passant par un point critique de f est
une géodésique.

Exercice 11.4. (a) On note H ⊂ R3 l’hélicoïde d’équation x sin(z) = y cos(z) et C ⊂ R3 le cylindre
circulaire droit d’équation x2 + y2 = 1. Montrer que l’intersection de ces deux surfaces est la réunion
disjointe des images des deux hélices γ± : R→ R3 suivantes :

γ+(t) = (cos(t), sin(t), t), γ−(t) = (− cos(t),− sin(t), t),

C’est-à-dire
H ∩ C = γ+(R) ∪ γ−(R) et γ+(R) ∩ γ−(R) = ∅.

(en particulier l’intersection H ∩ C possède deux composantes connexes).
(b) γ±(t) est-elle une géodésique du cylindre ?

(c) γ±(t) est-elle une géodésique de l’hélicoïde ?

Solution 11.4. (a) On prouve d’abord que γ+(t) ⊂ H ∩ C pour tout t. Cela se fait directement en
vérifiant que pour tout t ∈ R, le point (x, y, z) = (cos t, sin t, t) vérifie les équations des deux surfaces.
On a en effet

x sin(z)− y cos(z) = cos(t) sin(t)− sin(t) cos(t) = 0,

et
x2 + y2 = cos2(t) + sin2(t) = 1.

On montre que γ−(t) ⊂ H ∩ C de la même manière, ce qui prouve que

γ+(R) ∪ γ−(R) ⊂ H ∩ C.

Pour montrer l’inclusion inverse, on doit montrer qu’un point arbitraire (x, y, t) ∈ H ∩ C est situé sur
l’une au l’autre des deux courbes. Si le point (x, y, z) ∈ H, alors on a x sin(z) = y cos(z), donc il
existe λ ∈ R tel que x = λ cos(z) et y = λ sin(z). Mais d’autre part (x, y, z) ∈ C, ce qui signifie que
x2 + y2 = 1 et donc λ = ±1.
Nous avons montré que tout point (x, y, t) ∈ H ∩ C s’écrit ou bien (cos(z), sin(z), z) = γ+(z),
ou bien (− cos(z),− sin(z), z) = γ−(z).

Par ailleurs, il est clair que γ+(R) ∩ γ−(R) = ∅ car sinon il existerait t, u ∈ R tels que γ+(t) = γ−(u),
alors t = u et cos(u) = − cos(u) et sin(u) = − sin(u), ce qui est impossible.

(b) La réponse est positive, γ±(t) est une géodésique du cylindre. Prouvons le cas de γ(t) = γ+(t),
l’équation du cylindre est f(x, y, z) = x2+y2−1 = 0 et on a ∇f(x, y, z) = (2x, 2y, 0). Pour vérifier que
γ(t) est une géodésique du cyclindre, on peut vérifier que γ̈(t) est orthogonal au plan tangent Tγ(t)C.
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ou, de façon équivalente on peut vérifier que γ̈(t) est colinéaire au gradient ∇f(γ(t)) (car le gradient
est orthogonal au plan tangent). Or nous avons

γ̈(t) = (− cos(t),− sin(t), 0) et ∇f(γ(t)) = (2x, 2y, 0) = (2 cos(t), 2 sin(t), 0).

Ces deux vecteurs sont colinéaires pour tout t, ce qui implique que γ̈(t) est normal au cylindre et donc
γ est une géodésique du cylindre. Le raisonnement est le même pour γ−(t).

(c) La réponse est négative, γ±(t) n’est pas une géodésique de l’hélicoïde. L’équation de l’hélicoïde
est g(x, y, z) = x sin(z) − y cos(z) et on a ∇g(x, y, z) = (sin(z),− cos(z), x cos(z) + y sin(z)). On voit
très facilement que les vecteurs

γ̈(t) = (− cos(t),− sin(t), 0) et ∇g(γ(t)) = (sin(t),− cos(t), 1)

ne sont pas colinéaires (en fait ils sont orthogonaux). Donc γ n’est pas une géodésique de l’hélicoïde.
Le raisonnement est le même pour γ−(t)

Exercice 11.5. Calculer explicitement l’application de Gauss ν : E → S2 de l’ellipsoïde donné sous
forme implicite par

E =
{

(x, y, z) ∈ R3 | x2
a2

+ y2

b2
+ z2

c2
= 1
}
.

Il s’agit donc de donner une formule pour ν = ν(x, y, z) pour chaque point (x, y, z) ∈ E (on suppose
a, b, c non nuls).

Que remarque-t-on dans le cas où a = b = c = 1 (i.e. lorsque E est la sphère unité).

Solution 11.5. On a E =
{

(x, y, z) ∈ R3 | f(x, y, z) = 1
}
, avec f(x, y, z) = x2

a2
+ y2

b2
+ z2

c2
. L’application

de Gauss est donc définie (au signe près) par

ν(x, y, z) = ± ∇f
‖∇f‖

= ±
( x
a2
, y
b2
, z
c2

)√
x2

a4
+ y2

b4
+ z2

c4

.

On remarque que orsque E = S2 est la sphère unité, l’application de Gauss est ou bien l’application
identité ou bien l’application antipodale de S2 suivant la co-orientation choisie.

Exercice 11.6. Soit γ : I → S une courbe régulière de classe C2 tracée sur une surface régulière
co-orientée S ⊂ R3. On appelle repère de Darboux le long de γ relatif à la surface S le repère
mobile orthonormé {ν(t),Tγ(t),µ(t)} où Tγ(t) = 1

Vγ(t)
γ̇(t) est le vecteur tangent unitaire à γ, ν(t)

est l’application de Gauss de S évaluée en γ(t) et µ(t) = ν(t)×Tγ(t).

On note Kγ(t) le vecteur de courbure de γ. On rappelle que la courbure normale et la courbure
géodésique de γ sont les fonctions du paramètre t définies respectivement par

kn(t) = 〈Kγ(t),ν(t)〉 et kg(t) = 〈Kγ(t),µ(t)〉.

(a) Montrer que κ(t)2 = kn(t)2 + kg(t)
2, où κ est la courbure de γ (en tant que courbe de R3).

(b) Prouver que γ est géodésique si et seulement si sa vitesse est constante et sa courbure géodésique
est nulle.

(c) Calculer le repère de Darboux, la courbure géodésique et la courbure normale du petit cercle sur
la sphère unité S2 défini par les équations x2 + y2 + z2 = 1 et z = c (où −1 < c < 1).
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Solution 11.6. (a) Puisque le repère de Darboux est un repère orthonormé, on a

K = 〈K,ν〉ν + 〈K,T〉T + 〈K,µ〉µ.

Nous avons 〈K,T〉 = 0 (le vecteur de courbure est orthogonal à γ̇), donc K = 〈K, ν〉ν + 〈K, µ〉µ, par
conséquent

κ2 = ‖K‖2 = 〈K, ν〉2 + 〈K, µ〉2 = kn(t)2 + kg(t)
2.

(b) Par définition, une courbe γ de classe C2 tracée sur la surface est géodésique si et seulement si son
accélération γ̈(t) est orthogonale au plan tangent Tγ(t)S pour tout t. En développant γ dans le repère
de Darboux, on voit que cela revient à dire que

〈γ̈(t),µ(t)〉 = 〈γ̈(t),Tγ(t)〉 = 0.

En utilisant la formule de l’accélération γ̈ = V̇Tγ(t) + V 2Kγ(t), on obtient

V̇ = V̇ 〈T,T〉 = 0 et kg(t) = 〈K, µ〉µ = 0,

car µ ⊥ T et K ⊥ T.

(c) Pour la question (c), on choisit (par exemple) la coorientation donnée par la normale extérieure.
Dans ce cas l’application de Gauss ν de la sphère unité est l’identité ν : S2 → S2. La courbe considérée
(le petit cercle) est paramétrisée par γ(t) = (a cos(t), a sin(t), c), avec a =

√
1− c2 (cette condition

garanti que γ(t) ∈ S2). On a alors par des calculs standards :

Vγ = a, T(t) =
1

V
γ̇(t) = (− sin(t), cos(t), 0), K(t) =

1

V
Ṫ(t) = −1

a
(cos(t), sin(t), 0).

Le repère de Darboux est 
ν(t) = γ(t) = (a cos(t), a sin(t), c),

T(t) =
γ̇(t)

‖γ̇(t)‖
= (− sin(t), cos(t), 0),

µ(t) = ν(t)×T(t) = (−c cos(t),−c sin(t), a)

Le vecteur de courbure est

K(t) =
1

‖γ̇(t)‖
Ṫ(t) = −1

a
(cos(t), sin(t), 0),

on a donc
kn(t) = 〈Kγ(t),ν(t)〉 = −1 et kg(t) = 〈Kγ(t),µ(t)〉 =

c

a
.

Remarques : (i) On vérifie facilement que

kn(t)2 + kg(t)
2 = 1 +

c2

a2
=
a2 + c2

a2
=

1

a2
= ‖K‖2

(ça n’était pas demandé mais il peut être rassurant de vérifier que nos calculs sont corrects)
(ii) On peut trouver étrange que la courbure normale d’une courbe sur la sphère soit négative. Si on
préfère que la courbure normale d’une courbe sur une surface convexe soit positive, il faut prendre la
co-orientation associée à la normale intérieure et non la normale extérieure.
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Exercice 11.7. On continue avec la situation et les notations de l’exercice précédent, et on définit la
torsion géodésique de γ par

τg(t) = 1
Vγ(t)
〈ν̇(t),µ(t)〉.

(c) Calculer la torsion géodésique du petit cercle sur S2 défini {z = c}.

(d) Prouver que le repère de Darboux vérifie les équations différentielles suivantes :
1
V Ṫ = kgµ + knν,
1
V ν̇ = −knT + τgµ,
1
V µ̇ = −kgT− τgν,

Solution 11.7. (c) Les calculs précédents nous disent que ν(t) = γ(t) = (a cos(t), a sin(t), c) et µ(t) =
−(c cos(t), c sin(t), 0). On a donc ν̇(t) = γ̇(t) = (−a sin(t), a cos(t), 0). On a aussi Vγ = ‖γ̇(t)‖ = a,
donc la torsion géodésique d’un cercle sur une sphère est nulle, on a en effet

τg(t) = 1
Vγ(t)
〈ν̇(t),µ(t)〉 = 0.

(d) On remarquera l’analogie de ces équation avec les équations de Serret-Frenet. On observe que la
première équation vient de la définition de la courbure normale et de la courbure géodésiques :

1
V Ṫ = K = kgµ + knν.

La deuxième équation vient du développement de ν̇ dans le repère de Darboux (qui est orthonormé)

ν̇ = 〈ν̇,ν〉ν + 〈ν̇,T〉T + 〈ν̇,µ〉µ

et des égalités
〈ν̇,ν〉 = 0, 〈ν̇,T〉 = −〈ν, Ṫ〉 = −Vγkn et 〈ν̇,µ〉 = Vγτg.

La dernière équation vient du développement de µ̇

µ̇ = 〈µ̇,ν〉ν + 〈µ̇,T〉T + 〈µ̇,µ〉µ

et des égalités

〈µ̇,ν〉 = −〈ν̇,µ〉 = −Vγτg, 〈µ̇,T〉 = −〈µ, Ṫ〉 = −Vγkg et 〈µ̇,µ〉 = 0.

B. Exercice supplémentaire

Exercice 11.8. Lire les chapitres 3 et 4 du livre La Science et l’Hypothèse (de Henri Poincaré, 1902).
Disponible ici en version électronique :
https://www.ebooksgratuits.com/pdf/poincare_science_hypothese.pdf
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C. Illustrations

Figure 1: ε-tube autour d’une courbe.

Figure 2: Cône généralisé.

Figure 3: Intersection d’une demi-hélicoïde et d’un cylindre circulaire droit
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Figure 4: Pavage hyperbolique du disque de Poincaré. Tous les triangles ont la même aire.

Figure 5: Cette représentation par M.C. Escher du plan hyperbolique –appelée Circle Limit III– date de 1959;
l’artiste avait fait la connaissance du mathématicien H.C. Coxeter, qui lui avait envoyé un article contenant une
figure de pavage hyperbolique.
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Figure 6: Cette sculpture est l’œuvre du sculpteur A. Duarte et date de 1973. On peut l’admirer au bout de
la jetée à Ouchy. Elle est constituées de plusieurs surfaces réglées, ce qui semblait un thème à la mode à cette
époque..
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