EPFL - Automne 2024 M. Troyanov “PEL
MATH 213: Géomeétrie Différentielle Solution Exercices
Série 10 22.11.2024

Objectifs pour cette semaine : Le premier exercice relie le volume d’un parallélépipéde & la matrice
de Gram. Les autres exercices portent sur des notions de géométrie intrinséque des surfaces.

Exercice 10.1. Expliquer pourquoi le volume du parallélépipéede P C R" construit sur les vecteurs

by,..., b, € R™ vérifie
Vol(P) = /det(G),

ou G, est la matrice de Gram de by, . .., by, (c’est-a-dire la matrice dont les coefficients sont les produits
scalaires g;; = (b;, bj)).

Solution 10.1. Dans le cas du plan, i.e. lorsque m = 2, on a vu au chapitre 1 que

Aire(P) = /[[b1[?[b2][2 — (b1, b2)?.

Dans le cas général, on sait que le volume orienté du parallélépipéde P est le déterminant de la matrice
B dont les colonnes sont les composantes des vecteurs b; dans la base canonique (ou dans n’importe
quelle base orthonormeée directe) :

Volor(P) =det(B), B=(b;) oit b;=> bje;.
i=1

D’autre part on a G = BT B, par conséquent

det(G) = det(B'B) = det(B ") det(B) = det(B)? = Vol(P)2.

Exercice 10.2. (a) Donner un domaine ouvert maximal sur lequel les coordonnées polaires définissent
un difféomorphisme 9 : (r,6) — (x,y).

(b) Calculer le tenseur métrique associé.

(¢) En déduire la formule pour calculer l'aire d’un domaine en coordonnées polaires.

Solution 10.2. (a) L’application ¢ (r,0) = (r cos(f),rsin(f)) défini un difféomorphime entre
Q={(r,0)|r>0 -7 <0 <7}

et
U={(z,y) eR? |y #0ouz>0}=R*\{(z,0) | z <0}

(on fait une “coupure dans le plan en lui enlevant une demi-droite issue de l'origine, on pourrait
choisir une autre demi-droite; cette procédure est aussi utilisée pour définir les détermination de
la fonction complexe log(z)).

oy

oY . . .
5 = (cos(0),sin(f)) et by = 20 = (—rsin(@),rcos(0)). Alors

g1 =|b1l> =1, gi2=(b1,bg) =0, goa=|ba|*> =7

(b) On calcule b; =

Le tenseur métrique est donc G(r,0) = ( 9).

Remarque. On peut aussi le calculer rapidement ainsi : on a « = r cos(), y = rsin(#), donc

ds? = da® + dy? = (cos(0)dr — rsin(0)d)* + (sin(0)dr + r cos(0)d)* = dr? + r2d6>.



(¢) L’aire d’un domaine D du plan se calcule donc en coordonnées polaires par
Aire(D) = // Vdet Gdrdf = // rdrdf,

ott D' = 1¢~(D) est la représentation du domaine D dans les coordonnées polaires (i.e. (r,0) € D’
correspond & (x,y) € D).

Exercice 10.3. Considérons I'hélicoide définie par
S = {(z,yz) € R®| wsin(z) —ycos(z) = 0}
(a) Prouver que I'hélicoide est une surface réglée et décrire la géométrie de cette surface.

(b) Montrer que 'application
Y(u,v) = (veos(u),vsin(u), u)

défini un diféomorphisme (global) entre R? et S.
(c) Calculer ensuite le tenseur métrique associé a ce paramétrage.

Solution 10.3. (a) On montre d’abord que S C R3 est une surface réguliére, c’est-a-dire une sous-
variété différentiable. La surface est définie par S = f~1(0) ou f : R? — R est la fonction de classe
C* définie par f(z,y,z) = xsin(z) — ycos(z). Cette fonction est de rang constant = 1 (c’est une
submersion) car son gradient

Vf = (sin(z2), — cos(z), x cos(z) + ysin(z))

ne s’annule en aucun point de R3. On conclut par le théoréme 3.15 (A) du cours que S est une
sous-variété de dimension 2 de R3.

Rappelons maintenant qu’une surface est dite réglée si chaque point appartient & une droite ou un
segment de droite entiérement contenu dans la surface. Pour chaque valeur fixe de ¢ € R, les équations

z=c, xsin(c) — ycos(c) =0

représentent une droite de R?® (comme l'intersection de deux plans), et cette droite est clairement
contenue dans I’hélicoide. L’hélicolde est ainsi engendrée par une droite horizontale qui tourne a
vitesse constante en se déplagant le long de I'axe Oz.




(b) Nous devons montrer les points suivants :

(b1) 9(u,v) € S pour tout (u,v) € R2.
(b2) 1 est de classe C* avec k > 1 et c’est une immersion (le rang de v est égal a 2 = dim(RR?)).
(b3) % est bijectif et son inverse est différentiable.

(bl) Pour montrer que ¥ (u,v) € S, il suffit de constater que v (u,v) vérifie ’équation de I’hélicoide
xsin(z) = ycos(z). C’est un calcul élémentaire : on a z(u,v) = v cos(u), y(u,v) = vsin(u), 2(u,v) = u,
et donc

xsin(z) = v cos(u) sin(u) = y cos(z).

Ainsi ¢ (u,v) € S pour tout (u,v) € R?.
(b2) L’application v est clairement de classe C*°, et sa matrice jacobienne est
—vsinu  cos(u)
Diyp(u,v) = veosu  sin(u)
1 0
Cette matrice est de rang 2 pour tout (u,v) € R2.

(b3) Les points (bl) et (b2) montrent que 1 représente localement une paramétrisation de I’hélicoide.
Pour montrer que 1 est globalement un différomorphisme du plan R? vers la surface S nous allons
construire un inverse différentiable ¢ de .

Pour cela définissons d’abord deux domaines de R? par
U = {(z,y,2) €ER3| cos(z) 0} et U= {(x,y,2) € R |sin(z) # 0},

puis on définit les applications o1 : Uy — R? et ¢y : Uy — R? par

o1(x,y, 2) = <z, co:(z)> et o(z,y,2) = <Z7 Siny(z)> :

Il est clair que @1 et @9 sont différentiables de classe C'°°. De plus @1 et @9 coincident sur les points
de S :

p1r=o sur SNUNUs,
car pour tout point de SNU; NUs, on a
£ Y

cos(z)  sin(z)’

On peut donc définir ¢ : S — R? par

(l‘ z) — {@1(%,]/,2) si COS(Z) 7& 0,
oz, y, @a(z,y,2) si sin(z) # 0.

Cette formule ne définit pas une application de R3 vers R?, mais sa restriction a la surface S est bien
définie car pour tous les points (z,y,2) € S tels que sin(z) # 0 et cos(z) # 0 on a

r oy
cos(z)  sin(z)

(4 cause de la condition zsin(z) — ycos(z) = 0). L’application ¢ : S — R? est différentiable, de classe
C™ car au voisinage de chaque point de S on peut ’étendre en une application différentiable définie
sur un ouvert de R3.



(c) Le repére adapté a ce paramétrage est donné par

o) —vsinu o) Cf)Su
bi=—=|{ vcosu |, by = —/— = | sinu
ou 1 ov 0

Le tenseur métrique associa est alors donné par
b ||2 <b1 b2> 1+U2 0
G(u,v) = b ' =
R Tt 0 1

Remarque. La réponse au point (b) donne une autre preuve que S est une surface réglée, car
P(u,v) = (0,0,u) + v(cosu,sinu,0) = (vcosu,vsinu, u)

est une famille de droites (paramétrée par u).

Exercice 10.4. Prouver que l'aire d’'une surface paramétrée réguliére ¢ : Q@ — S C R3 de classe C*
peut se calculer par la formule

Aire(S / 122 % %)l qudy

Solution 10.4. On rappelle I'identité de Lagrange (exercice 1.2) pour les vecteurs de R3, elle dit que
(axb,cxd)={(a,c)(b,d) —(a,d) (b,c). En particulier on a

la > b||* = [la]*|[b]|* - (a, b)*

Avec les notations habituelles de la théorie des surfaces, on a donc,

ob 00
'au H = [1b1 x ball = V/bilP[bo] = (b, b)? = /911922 — .
/ Hg;fxngydudv:// V11922 — ghadudv = Aire(S).

Q Q

ainsi

Exercice 10.5. Soit f : [a,b] — R une fonction de classe C! et notons S la surface de révolution dans
R3 obtenue par rotation du graphe de f autour de I'axe Ox. Prouver soigneusement que

b
Aire(S) = 27r/ V14 (f'(2)?|f(x)| de.
Solution 10.5. On paramétrise la surface de révolution par

¥(x,0) = (x,cos(0) f(x),sin(0) f(z))
(Paxe de rotation est 'axe Ox). Le plan tangent en un point quelconque est donné par

o oY

by = oz 00

(1 cos(0) f'(z), sin(@)f’(w)) , by = = (0, —sin(0) f(x), cos(0) f(z))



ce qui donne le tenseur métrique

g =1+ f(2)% g12=0, ga=f(2).

On a donc ’élément d’aire

dA = \/ 911922 — Q%le’de =1+ (f'(x))?|f(z)|dzdd,

et le domaine de paramétrisation est 0 < 6 < 27, a < x < b. Ainsi

Aire(S /9 /“\/flf |dxd9_27r/\/7|f )| d.

Exercice 10.6. La chainette est le graphe du cosinus hyperbolique, c¢’est-a-dire la courbe «(t) =
(t,cosh(t)).

(a) Expliquer pourquoi cette courbe s’appelle ainsi (une petite recherche sur internet n’est pas inter-
dite).

Montrer que la courbure de a est donnée par (t) = 1/ cosh(t)?.

—
o =3
~—

Calculer la développée de .

(d) Calculer 'abscisse curviligne de la chainette depuis le point initial a(0) = (0,1), puis donner la
paramétrisation naturelle de .

(e) La surface de révolution de la chainette autour de 'axe Ox s’appelle une caténoide. Calculer le
tenseur métrique de la caténoide (en préférant la paramétrisation naturelle de la chainette).

Solution 10.6. (a) On peut prouver rigoureusement que la forme idéale que prend une chaine ou
un cable suspendu est décrite par I'équation y(z) = %(cosh(w) — 1), ol a est une constante physique
(a = % avec p = densité linéaire de masse du cable ou de la chaine, T' est la tension et g la valeur
du champ de gravitation). L’argument est de nature statique (équilibre des forces) et ne prend que

quelques lignes de développement.

(b) Presque immeédiat & partir de la formule k =
(t,cosh(t)).
(c

) Rappelons que la développée d’une courbe biréguliére av est la courbe 3(t) = a(t) + p(t)Ng/().
On a

yr — 1y s
G210 et de la paramétrisation (z(t),y(t)) =

o(t) = 1/k(t) = cosh2(t) et N = =SB

cosh(t)
Donc
B(t) = (t,cosh(t)) + cosh(t)(—sinh(t),1) = (¢ — cosh(t) sinh(¢), 2 cosh(t)) .
(d) La vitesse est Vo (t) = cosh(t) (vous l'avez déja calculée pour la question précédente). Donc

s(t) = fg cosh(7)dr = sinh(t), et la paramétrisation naturelle de la chainette est

5 (sinh_l(s), V1+ 52) = (log(s +V1+ s2), V1+ 52) .

(e) Paramétrisons maintenant la caténoide comme surface de révolution autour de ’axe Ox en partant
du paramétrage naturel de la chainette comme profil. Cela nous donne

(s, 0) = <log(s +V1+52), 1+ s2cos(d), V1 + s2 sin(0)> .

5



Le tenseur métrique est

Gls,0) = ((1) 1fs2>

Remarque: On peut prouver que la sur-
face d’aire minimale dont le bord est la
réunion de deux cercles paralléles dans
R3 est la caténoide s’appuyant sur ces
deux cercles.

Exercice 10.7. Soit S, C R? la sphére de rayon a > 0 centrée en l'origine. On appelle projection
stéréographique 1'application
7:8,\{(0,0,a)} — R?

qui envoie un point p = (x,y,2) € S, (p # (0,0,a)) sur 'unique point ¢ du plan R? tel que les trois
points (0,0,a), p et ¢ sont alignés (on regarde R? comme un plan dans R3.)

Notons v : R? — S, 'application inverse de la projection stéréographique.

Trouver une formule explicite pour ¢ et montrer que v est un paramétrage régulier de S,\{(0,0,a)}.

(a)
(b) Calculer le tenseur métrique associé a cette paramétrisation.
) Cette paramétrisation est-elle conforme ?

)

Prouver que la projection stéréographique définit un homéomorphisme entre la sphére et le com-
pactifié d’Alexandrov de R2.

(Le compactifié d’Alezandrov de R? est ’ensemble R2 = R? U{oo} muni de la topologie pour laque-

lle tout voisinage d’un point ¢ de R? est aussi un voisinage de ¢ dans R2? et les complémentaires
des parties compactes de R? forment une base de voisinage du point 00).

Remarque. Parfois on définit la projection stéréographique en projetant sur un autre plan que le plan
de l’équateur, en particulier on projette souvent sur la plan tangent au “pdle sud” (0,0, —a).

Solution 10.7. (a) Il faut étre bien organisé dans les calculs; notons ¥ (u,v) = (z,y, 2z) le point de
la sphére S, aligné sur (u,v,0) et (0,0,a). Comme la projection stéréographique est une application



équivariante par rapport a toute rotation autour de 'axe Oz, il sera commode de noter r = |(u,v)| =
Vu? +v? et p=|(z,y)] = /2% + y?. Par les théorémes de Thalés et Pythagore on a

2 2 2
7:727 25+ p° =a”.

Donc
T p a® —z a+z

a2 (a—2)? (a—2)?2 a-—2z

En résolvant par rapport a z, on trouve

(1) r? — a? u? + 0% — a?
z=z(u,v) =a- —q- .

r2 + a? u? + 02 +a?
On a donc

_(a—2)r 2a°r
p= a w02+ a?’
et donc
U 2a°u pv 2a%v
z(u,v)="—= - y(u,v) = — =

r u2+ 02+ a?’ r ou? 424 a?’

La paramétrisation cherchée s’écrit donc

1
u,v) = Mu, v) (2d%u, 2a%v, a(u® +v* — a?)), avec A u,v) = ——5——.

Y, v) = A(w,0) ( ( ) (1,0) = s

Il peut étre utile et rassurant de vérifier qu’on a bien [[(u,v)|| = a (i.e. ¥ (u,v) appartient a la sphére
Sa)). Le point suivant nous confirmera que la paramétrisation 1 est réguliére.

(b) Pour calculer le tenseur métrique, il est utile de noter que

O\ O\
= = —2\%, = =-2\%.
ou Y B Y
On a (aprés quelques calculs)
0
b, = gf = 2a?X? ((a* — u? + v?), —2uv, 2au)
by, = ;Z; = 2a’)\? (—2uv, (a® + u? — v?), 2av) .

on voit facilement que g12 = (b, bs) = 0. On a aussi
g11 = (b1,by) = 4a*\* ((a2 —u?+ v2)2 + 4uv? + 4a2u2) = 4a*)\?

et de méme goo = 4a*)2. Ainsi le tenseur métrique est

Glu, v) = 4a*\(u, v)? ( (1) (1’ ) ,

que l'on écrit souvent sous la forme
4a*(du? + dv?)
(a2 + u2 +v2)2’

ds® =

(Les calculs confirment que les champs by et bg sont linéairement indépendants et donc la paramétri-
sation est réguliére).

(c) Le calcul précédent montre en effet que la projection stéréographique est conforme. Sur une carte
stéréographique les angles sont préservés.

(d) Au vu de la définition du compactifié d’Alexandrov de R?, il suffit de vérifier que lim, )00 1(u, v) =
(0,0,a). Or c’est évident géométriquement et est confirmé par les formules obtenues précédemment.




