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MATH 213: Géométrie Différentielle Solution Exercices
Série 10 22.11.2024

Objectifs pour cette semaine : Le premier exercice relie le volume d’un parallélépipède à la matrice
de Gram. Les autres exercices portent sur des notions de géométrie intrinsèque des surfaces.

Exercice 10.1. Expliquer pourquoi le volume du parallélépipède P ⊂ Rm construit sur les vecteurs
b1, . . . ,bm ∈ Rm vérifie

Vol(P) =
√

det(G),

oùG, est la matrice de Gram de b1, . . . ,bm (c’est-à-dire la matrice dont les coefficients sont les produits
scalaires gij = 〈bi,bj〉).

Solution 10.1. Dans le cas du plan, i.e. lorsque m = 2, on a vu au chapitre 1 que

Aire(P) =
√
‖b1‖2‖b2‖2 − 〈b1,b2〉2.

Dans le cas général, on sait que le volume orienté du parallélépipède P est le déterminant de la matrice
B dont les colonnes sont les composantes des vecteurs bi dans la base canonique (ou dans n’importe
quelle base orthonormée directe) :

Volor(P) = det(B), B = (bij) où bj =
n∑
i=1

bijei.

D’autre part on a G = B>B, par conséquent

det(G) = det(B>B) = det(B>) det(B) = det(B)2 = Vol(P)2.

Exercice 10.2. (a) Donner un domaine ouvert maximal sur lequel les coordonnées polaires définissent
un difféomorphisme ψ : (r, θ)→ (x, y).

(b) Calculer le tenseur métrique associé.

(c) En déduire la formule pour calculer l’aire d’un domaine en coordonnées polaires.

Solution 10.2. (a) L’application ψ(r, θ) = (r cos(θ), r sin(θ)) défini un difféomorphime entre

Ω = {(r, θ)
∣∣ r > 0, −π < θ < π}

et
U = {(x, y) ∈ R2 | y 6= 0 ou x > 0} = R2 \ {(x, 0) | x ≤ 0}

(on fait une “coupure dans le plan en lui enlevant une demi-droite issue de l’origine, on pourrait
choisir une autre demi-droite; cette procédure est aussi utilisée pour définir les détermination de
la fonction complexe log(z)).

(b) On calcule b1 =
∂ψ

∂r
= (cos(θ), sin(θ)) et b2 =

∂ψ

∂θ
= (−r sin(θ), r cos(θ)). Alors

g11 = ‖b1‖2 = 1, g12 = 〈b1,b2〉 = 0, g2,2 = ‖b2‖2 = r2.

Le tenseur métrique est donc G(r, θ) =
(

1 0
0 r2

)
.

Remarque. On peut aussi le calculer rapidement ainsi : on a x = r cos(θ), y = r sin(θ), donc

ds2 = dx2 + dy2 = (cos(θ)dr − r sin(θ)dθ)
2

+ (sin(θ)dr + r cos(θ)dθ)
2

= dr2 + r2dθ2.
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(c) L’aire d’un domaine D du plan se calcule donc en coordonnées polaires par

Aire(D) =

∫∫
D′

√
detGdrdθ =

∫∫
D′
r drdθ,

où D′ = ψ−1(D) est la représentation du domaine D dans les coordonnées polaires (i.e. (r, θ) ∈ D′
correspond à (x, y) ∈ D).

Exercice 10.3. Considérons l’hélicoïde définie par

S = {(x, yz) ∈ R3 | x sin(z)− y cos(z) = 0}

(a) Prouver que l’hélicoïde est une surface réglée et décrire la géométrie de cette surface.

(b) Montrer que l’application
ψ(u, v) = (v cos(u), v sin(u), u)

défini un diféomorphisme (global) entre R2 et S.

(c) Calculer ensuite le tenseur métrique associé à ce paramétrage.

Solution 10.3. (a) On montre d’abord que S ⊂ R3 est une surface régulière, c’est-à-dire une sous-
variété différentiable. La surface est définie par S = f−1(0) où f : R3 → R est la fonction de classe
C∞ définie par f(x, y, z) = x sin(z) − y cos(z). Cette fonction est de rang constant = 1 (c’est une
submersion) car son gradient

∇f = (sin(z),− cos(z), x cos(z) + y sin(z))

ne s’annule en aucun point de R3. On conclut par le théorème 3.15 (A) du cours que S est une
sous-variété de dimension 2 de R3.
Rappelons maintenant qu’une surface est dite réglée si chaque point appartient à une droite ou un
segment de droite entièrement contenu dans la surface. Pour chaque valeur fixe de c ∈ R, les équations

z = c, x sin(c)− y cos(c) = 0

représentent une droite de R3 (comme l’intersection de deux plans), et cette droite est clairement
contenue dans l’hélicoïde. L’hélicoÏde est ainsi engendrée par une droite horizontale qui tourne à
vitesse constante en se déplaçant le long de l’axe Oz.
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(b) Nous devons montrer les points suivants :

(b1) ψ(u, v) ∈ S pour tout (u, v) ∈ R2.

(b2) ψ est de classe Ck avec k ≥ 1 et c’est une immersion (le rang de ψ est égal à 2 = dim(R2)).

(b3) ψ est bijectif et son inverse est différentiable.

(b1) Pour montrer que ψ(u, v) ∈ S, il suffit de constater que ψ(u, v) vérifie l’équation de l’hélicoïde
x sin(z) = y cos(z). C’est un calcul élémentaire : on a x(u, v) = v cos(u), y(u, v) = v sin(u), z(u, v) = u,
et donc

x sin(z) = v cos(u) sin(u) = y cos(z).

Ainsi ψ(u, v) ∈ S pour tout (u, v) ∈ R2.

(b2) L’application ψ est clairement de classe C∞, et sa matrice jacobienne est

Dψ(u, v) =

 −v sinu cos(u)
v cosu sin(u)

1 0

 .

Cette matrice est de rang 2 pour tout (u, v) ∈ R2.

(b3) Les points (b1) et (b2) montrent que ψ représente localement une paramétrisation de l’hélicoïde.
Pour montrer que ψ est globalement un différomorphisme du plan R2 vers la surface S nous allons
construire un inverse différentiable ϕ de ψ.
Pour cela définissons d’abord deux domaines de R3 par

U1 = {(x, y, z) ∈ R3 | cos(z) 6= 0} et U2 = {(x, y, z) ∈ R3 | sin(z) 6= 0},

puis on définit les applications ϕ1 : U1 → R2 et ϕ2 : U2 → R2 par

ϕ1(x, y, z) =

(
z,

x

cos(z)

)
et ϕ2(x, y, z) =

(
z,

y

sin(z)

)
.

Il est clair que ϕ1 et ϕ2 sont différentiables de classe C∞. De plus ϕ1 et ϕ2 coïncident sur les points
de S :

ϕ1 = ϕ2 sur S ∩ U1 ∩ U2,

car pour tout point de S ∩ U1 ∩ U2, on a

x

cos(z)
=

y

sin(z)
.

On peut donc définir ϕ : S → R2 par

ϕ(x, y, z) =

{
ϕ1(x, y, z) si cos(z) 6= 0,

ϕ2(x, y, z) si sin(z) 6= 0.

Cette formule ne définit pas une application de R3 vers R2, mais sa restriction à la surface S est bien
définie car pour tous les points (x, y, z) ∈ S tels que sin(z) 6= 0 et cos(z) 6= 0 on a

x

cos(z)
=

y

sin(z)

(à cause de la condition x sin(z)− y cos(z) = 0). L’application ϕ : S → R2 est différentiable, de classe
C∞ car au voisinage de chaque point de S on peut l’étendre en une application différentiable définie
sur un ouvert de R3.
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(c) Le repère adapté à ce paramétrage est donné par

b1 =
∂ψ

∂u
=

−v sinu
v cosu

1

 , b2 =
∂ψ

∂v
=

cosu
sinu

0

 .

Le tenseur métrique associà est alors donné par

G(u, v) =

(
‖b1‖2 〈b1,b2〉
〈b1,b2〉 ‖b2‖2

)
=

(
1 + v2 0

0 1

)

Remarque. La réponse au point (b) donne une autre preuve que S est une surface réglée, car

ψ(u, v) = (0, 0, u) + v(cosu, sinu, 0) = (v cosu, v sinu, u)

est une famille de droites (paramétrée par u).

Exercice 10.4. Prouver que l’aire d’une surface paramétrée régulière ψ : Ω → S ⊂ R3 de classe C1

peut se calculer par la formule

Aire(S) =

∫∫
Ω
‖ ~∂ψ∂u ×

~∂ψ
∂v ‖dudv

Solution 10.4. On rappelle l’identité de Lagrange (exercice 1.2) pour les vecteurs de R3, elle dit que
〈a× b, c× d〉 = 〈a, c〉 〈b,d〉 − 〈a,d〉 〈b, c〉. En particulier on a

‖a× b‖2 = ‖a‖2‖b‖2 − 〈a,b〉2

Avec les notations habituelles de la théorie des surfaces, on a donc,∥∥∥∥∥ ~∂ψ∂u × ~∂ψ

∂v

∥∥∥∥∥ = ‖b1 × b2‖ =
√
‖b1‖2‖b2‖2 − 〈b1,b2〉2 =

√
g11g22 − g2

12,

ainsi ∫∫
Ω
‖ ~∂ψ∂u ×

~∂ψ
∂v ‖dudv =

∫∫
Ω

√
g11g22 − g2

12dudv = Aire(S).

Exercice 10.5. Soit f : [a, b]→ R une fonction de classe C1 et notons S la surface de révolution dans
R3 obtenue par rotation du graphe de f autour de l’axe Ox. Prouver soigneusement que

Aire(S) = 2π

∫ b

a

√
1 + (f ′(x))2 · |f(x)| dx.

Solution 10.5. On paramétrise la surface de révolution par

ψ(x, θ) = (x, cos(θ)f(x), sin(θ)f(x))

(l’axe de rotation est l’axe Ox). Le plan tangent en un point quelconque est donné par

b1 =
∂ψ

∂x
=
(
1, cos(θ)f ′(x), sin(θ)f ′(x)

)
, b2 =

∂ψ

∂θ
= (0,− sin(θ)f(x), cos(θ)f(x))
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ce qui donne le tenseur métrique

g11 = 1 + f ′(x)2, g12 = 0, g22 = f2(x).

On a donc l’élément d’aire

dA =
√
g11g22 − g2

12dxdθ =
√

1 + (f ′(x))2 · |f(x)|dxdθ,

et le domaine de paramétrisation est 0 ≤ θ ≤ 2π, a ≤ x ≤ b. Ainsi

Aire(S) =

∫ 2π

θ=0

∫ b

x=a

√
1 + (f ′(x))2 · |f(x)|dxdθ = 2π

∫ b

a

√
1 + (f ′(x))2 · |f(x)| dx.

Exercice 10.6. La chaînette est le graphe du cosinus hyperbolique, c’est-à-dire la courbe α(t) =
(t, cosh(t)).

(a) Expliquer pourquoi cette courbe s’appelle ainsi (une petite recherche sur internet n’est pas inter-
dite).

(b) Montrer que la courbure de α est donnée par κ(t) = 1/ cosh(t)2.

(c) Calculer la développée de α.

(d) Calculer l’abscisse curviligne de la chaînette depuis le point initial α(0) = (0, 1), puis donner la
paramétrisation naturelle de α.

(e) La surface de révolution de la chaînette autour de l’axe Ox s’appelle une caténoïde. Calculer le
tenseur métrique de la caténoïde (en préférant la paramétrisation naturelle de la chaînette).

Solution 10.6. (a) On peut prouver rigoureusement que la forme idéale que prend une chaîne ou
un cable suspendu est décrite par l’équation y(x) = 1

a(cosh(x) − 1), où a est une constante physique
(a = gρ

T avec ρ = densité linéaire de masse du cable ou de la chaîne, T est la tension et g la valeur
du champ de gravitation). L’argument est de nature statique (équilibre des forces) et ne prend que
quelques lignes de développement.

(b) Presque immédiat à partir de la formule k =
ÿẋ− ẍẏ

(ẋ2 + ẏ2)3/2
et de la paramétrisation (x(t), y(t)) =

(t, cosh(t)).

(c) Rappelons que la développée d’une courbe birégulière α est la courbe β(t) = α(t) + ρ(t)Nα(t).
On a

ρ(t) = 1/k(t) = cosh2(t) et N =
(− sinh(t), 1)

cosh(t)
.

Donc
β(t) = (t, cosh(t)) + cosh(t)(− sinh(t), 1) = (t− cosh(t) sinh(t), 2 cosh(t)) .

(d) La vitesse est Vα(t) = cosh(t) (vous l’avez déjà calculée pour la question précédente). Donc
s(t) =

∫ t
0 cosh(τ)dτ = sinh(t), et la paramétrisation naturelle de la chaînette est

s 7→
(

sinh−1(s),
√

1 + s2
)

=
(

log(s+
√

1 + s2),
√

1 + s2
)
.

(e) Paramétrisons maintenant la caténoïde comme surface de révolution autour de l’axe Ox en partant
du paramétrage naturel de la chaînette comme profil. Cela nous donne

ψ(s, θ) =
(

log(s+
√

1 + s2),
√

1 + s2 cos(θ),
√

1 + s2 sin(θ)
)
.
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Le tenseur métrique est

G(s, θ) =

(
1 0
0 1 + s2

)

Remarque: On peut prouver que la sur-
face d’aire minimale dont le bord est la
réunion de deux cercles parallèles dans
R3 est la caténoïde s’appuyant sur ces
deux cercles.

Exercice 10.7. Soit Sa ⊂ R3 la sphère de rayon a > 0 centrée en l’origine. On appelle projection
stéréographique l’application

π : Sa \ {(0, 0, a)} → R2

qui envoie un point p = (x, y, z) ∈ Sa (p 6= (0, 0, a)) sur l’unique point q du plan R2 tel que les trois
points (0, 0, a), p et q sont alignés (on regarde R2 comme un plan dans R3.)

Notons ψ : R2 → Sa l’application inverse de la projection stéréographique.

(a) Trouver une formule explicite pour ψ et montrer que ψ est un paramétrage régulier de Sa\{(0, 0, a)}.

(b) Calculer le tenseur métrique associé à cette paramétrisation.

(c) Cette paramétrisation est-elle conforme ?

(d) Prouver que la projection stéréographique définit un homéomorphisme entre la sphère et le com-
pactifié d’Alexandrov de R2.
(Le compactifié d’Alexandrov de R2 est l’ensemble R̂2 = R2∪{∞} muni de la topologie pour laque-
lle tout voisinage d’un point q de R2 est aussi un voisinage de q dans R̂2 et les complémentaires
des parties compactes de R2 forment une base de voisinage du point ∞).

Remarque. Parfois on définit la projection stéréographique en projetant sur un autre plan que le plan
de l’équateur, en particulier on projette souvent sur la plan tangent au “pôle sud” (0, 0,−a).

Solution 10.7. (a) Il faut être bien organisé dans les calculs; notons ψ(u, v) = (x, y, z) le point de
la sphère Sa aligné sur (u, v, 0) et (0, 0, a). Comme la projection stéréographique est une application
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équivariante par rapport à toute rotation autour de l’axe Oz, il sera commode de noter r = |(u, v)| =√
u2 + v2 et ρ = |(x, y)| =

√
x2 + y2. Par les théorèmes de Thalès et Pythagore on a

r

a
=

ρ

a− z
, z2 + ρ2 = a2.

Donc
r2

a2
=

ρ2

(a− z)2
=

a2 − z2

(a− z)2
=
a+ z

a− z
.

En résolvant par rapport à z, on trouve

z = z(u, v) = a · r
2 − a2

r2 + a2
= a · u

2 + v2 − a2

u2 + v2 + a2
.

On a donc

ρ =
(a− z)r

a
=

2a2r

u2 + v2 + a2
,

et donc

x(u, v) =
ρu

r
=

2a2u

u2 + v2 + a2
, y(u, v) =

ρv

r
=

2a2v

u2 + v2 + a2
.

La paramétrisation cherchée s’écrit donc

ψ(u, v) = λ(u, v) (2a2u, 2a2v, a(u2 + v2 − a2)), avec λ(u, v) =
1

u2 + v2 + a2
.

Il peut être utile et rassurant de vérifier qu’on a bien ‖ψ(u, v)‖ = a (i.e. ψ(u, v) appartient à la sphère
Sa)). Le point suivant nous confirmera que la paramétrisation ψ est régulière.
(b) Pour calculer le tenseur métrique, il est utile de noter que

∂λ

∂u
= −2λ2u,

∂λ

∂v
= −2λ2v.

On a (après quelques calculs)
b1 =

∂ψ

∂u
= 2a2λ2

(
(a2 − u2 + v2),−2uv, 2au

)
b2 =

∂ψ

∂v
= 2a2λ2

(
−2uv, (a2 + u2 − v2), 2av

)
.

on voit facilement que g12 = 〈b1,b2〉 = 0. On a aussi

g11 = 〈b1,b1〉 = 4a4λ4
(
(a2 − u2 + v2)2 + 4u2v2 + 4a2u2

)
= 4a4λ2

et de même g22 = 4a4λ2. Ainsi le tenseur métrique est

G(u, v) = 4a4λ(u, v)2

(
1 0
0 1

)
,

que l’on écrit souvent sous la forme

ds2 =
4a4(du2 + dv2)

(a2 + u2 + v2)2
.

(Les calculs confirment que les champs b1 et b2 sont linéairement indépendants et donc la paramétri-
sation est régulière).

(c) Le calcul précédent montre en effet que la projection stéréographique est conforme. Sur une carte
stéréographique les angles sont préservés.
(d) Au vu de la définition du compactifié d’Alexandrov de R2, il suffit de vérifier que lim(u,v)→∞ ψ(u, v) =
(0, 0, a). Or c’est évident géométriquement et est confirmé par les formules obtenues précédemment.
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