ANALYSE NUMERIQUE ET OPTIMISATION 24 mars 2025
SMT
M. Picasso

Corrigé 9

Exercice 1

1.a) On pose u) = sin(27x;), i = 0,..., N + 1. Pour tout n > 0, étant donné u?, i = 0,..., N + 1, le probléme

i =

discrétisé revient & chercher les u?“, 1=20,...,N + 1 tels que

u?+17u?_u?_1—2u?+u?+1 —0 i1 N
(R1) r P2 (1)
up™t = u?f;ll =0.
On a donc la formule explicite :
2T T T
1 , .
utt = (1 - h2> uy + ﬁull + ﬁu;ﬂrl, i=1,..,N. (2)

1.b) Le fichier MATLAB paraprog.m est complété de la maniére suivante :

function [err, unew, u_ex] = paraprog(N, M, tau)
% Schema d’Euler progressif pour un probleme parabolique unidimensionnel

% parametres

% N : nombre de points interieurs dans 1’intervalle [0,1]

% h : pas d’espace

%h M : nombre de pas de temps

% tau : pas de temps

%t : temps courant

% uold : N-vecteur, uold(i) est une approximation de u(x_i,t_n)
% unew : N-vecteur, unew(i) est une approximation de u(x_i,t_n+1)

h=1./(N+ 1);
t =0.;

% condition initiale (fct w definie ci-dessous)

for i = 1:N
uold(i) = w(ixh);
end

%

% schema d’Euler progressif

for n = 1:M
unew(1) = (1-2xtau/(h*h)) * uold(1l) + tau/(h*h) * uold(2);
for i = 2:N-1
unew(i) = (1-2%tau/(hx*h)) * uold(i) + tau/(h*h) * (uold(i-1) + uold(i+1));
end

unew(N) = (1-2xtau/(h*h)) * uold(N) + tau/(hxh) * uold(N-1);
t =t + tau;

A
% reactualiser la solution et imprimer la norme euclidienne de u
%
norm2 = 0.;
for i = 1:N
uold(i) = unew(i);
norm2 = norm2 + uold(i)*uold(i);
end

if (mod(n, 50) == 0)
fprintf(’ pas de temps %d temps %f norm2 %e \n’,n,t,norm2)
end
end



%
o
% imprimer 1’erreur maximum au temps final

%

err = 0;
for i = 1:N
x(1) = ixh;

u_ex(i) = uex(i*h, t);

erri = abs(unew(i) - uex(ixh, t));

if (erri > err)

err = erri;

end
end
fprintf(’ erreur maximum au temps final t = %e (M = J%d, N = %d): %e \n’, t, M, N, err);
plot(x, unew, ’*-b’, x, u_ex, ’-r’);
legend(’solution approchee’, ’solution exacte’);

o
%
% definition de la condition initiale w(x)
%
function init = w(x)

init = sin(2*pi*x);

A
% solution u du probleme de la chaleur (utilise pour le calcul de 1’erreur)
%
function u_exact = uex(x, t)
u_exact = w(x)*exp(-4.*pi*pixt);

2
Comme %(axt) = —4n?sin(27z) exp(—4n?t) = %(m,t% u(0,t) = u(1l,t) = 0 et u(z,0) = sin(2wz), u(x,t)
x
est solution du probleéme (P).
On a les résultats suivants au temps ¢t = 0.1 :
N +1 h T M Erreur
10 0.1 0.005 20 4.631713e-3

20 0.05 0.00125 80  1.245104e-3
40 0.025 0.0003125 320  3.127866e-4
80 0.0125 0.000078125 1280 7.828796e-5

On note que l'erreur est approximativement divisée par quatre lorsque h est divisé par deux et 7 est divisé par
quatre.

1.c) Nous remarquons que le schéma est stable pour N = 19 et 7 = 0.00125 (figure de gauche), tandis qu’il est
instable pour N = 19 et 7 = 0.0013 (figure de droite). La condition 7 < h?/2 est violée dans ce deuxiéme cas.
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Exercice 2

2.a) Le fichier £d2d.m implémente une méthode de différences finies en deux dimensions pour résoudre le probléme

{ —Au(z,y) =1 V(z,y) € Q,
u(z,y) =0 V(z,y) € 09,
avec Q = [0,1] x [0,1].

2.b) En prenant des valeurs croissantes pour le paramétre L, on vérifie que le maximum de la solution converge. Un
exemple est donné par le tableau suivant :



L max;_ ; |Ui7j|

5 0.072115
10 0.072173
20 0.073257
40 0.073563
80 0.073643

160 0.073664
320 0.073670
640 0.073671
1280 0.073671

2.c) La valeur maximale du paramétre L dépend de la machine que vous utilisez, et éventuellement du logiciel que
vous utilisez. Par exemple, avec une machine équipée d’un processeur Intel Xeon E5-2620@2.1Ghz et 32Go de
mémoire RAM, Octave 3.8.1 retourne une erreur & partir de L = 4500 environ. Ceci est di au fait que la place
mémoire nécessaire a la décomposition de Cholesky est O(L?), qui qui excéde la mémoire RAM pour L = 4500.



