
ANALYSE NUMÉRIQUE ET OPTIMISATION 24 mars 2025
SMT
M. Picasso

Corrigé 9

Exercice 1

1.a) On pose u0
i = sin(2πxi), i = 0, ..., N + 1. Pour tout n ⩾ 0, étant donné un

i , i = 0, ..., N + 1, le problème
discrétisé revient à chercher les un+1

i , i = 0, ..., N + 1 tels que

(R1)


un+1
i − un

i

τ
−

un
i−1 − 2un

i + un
i+1

h2
= 0, i = 1, ..., N,

un+1
0 = un+1

N+1 = 0.

(1)

On a donc la formule explicite :

un+1
i =

(
1− 2τ

h2

)
un
i +

τ

h2
un
i−1 +

τ

h2
un
i+1, i = 1, ..., N. (2)

1.b) Le fichier MATLAB paraprog.m est complété de la manière suivante :

function [err, unew, u_ex] = paraprog(N, M, tau)
%
% Schema d’Euler progressif pour un probleme parabolique unidimensionnel
%
% parametres
%
% N : nombre de points interieurs dans l’intervalle [0,1]
% h : pas d’espace
% M : nombre de pas de temps
% tau : pas de temps
% t : temps courant
% uold : N-vecteur, uold(i) est une approximation de u(x_i,t_n)
% unew : N-vecteur, unew(i) est une approximation de u(x_i,t_n+1)
%
h = 1./(N + 1);
t = 0.;

%
% condition initiale (fct w definie ci-dessous)
%
for i = 1:N

uold(i) = w(i*h);
end

%
% schema d’Euler progressif
%
for n = 1:M

unew(1) = (1-2*tau/(h*h)) * uold(1) + tau/(h*h) * uold(2);
for i = 2:N-1

unew(i) = (1-2*tau/(h*h)) * uold(i) + tau/(h*h) * (uold(i-1) + uold(i+1));
end
unew(N) = (1-2*tau/(h*h)) * uold(N) + tau/(h*h) * uold(N-1);
t = t + tau;

%
% reactualiser la solution et imprimer la norme euclidienne de u
%
norm2 = 0.;
for i = 1:N

uold(i) = unew(i);
norm2 = norm2 + uold(i)*uold(i);

end
if (mod(n, 50) == 0)

fprintf(’ pas de temps %d temps %f norm2 %e \n’,n,t,norm2)
end

end

%
% imprimer l’erreur maximum au temps final
%
err = 0;
for i = 1:N

x(i) = i*h;
u_ex(i) = uex(i*h, t);
erri = abs(unew(i) - uex(i*h, t));
if (erri > err)

err = erri;
end

end
fprintf(’ erreur maximum au temps final t = %e (M = %d, N = %d): %e \n’, t, M, N, err);
plot(x, unew, ’*-b’, x, u_ex, ’-r’);
legend(’solution approchee’, ’solution exacte’);

%
% definition de la condition initiale w(x)
%
function init = w(x)

init = sin(2*pi*x);

%
% solution u du probleme de la chaleur (utilise pour le calcul de l’erreur)
%
function u_exact = uex(x, t)

u_exact = w(x)*exp(-4.*pi*pi*t);

Comme
∂2u

∂x2
(x, t) = −4π2 sin(2πx) exp(−4π2t) =

∂u

∂t
(x, t), u(0, t) = u(1, t) = 0 et u(x, 0) = sin(2πx), u(x, t)

est solution du problème (P).
On a les résultats suivants au temps t = 0.1 :

N + 1 h τ M Erreur
10 0.1 0.005 20 4.631713e-3
20 0.05 0.00125 80 1.245104e-3
40 0.025 0.0003125 320 3.127866e-4
80 0.0125 0.000078125 1280 7.828796e-5

On note que l’erreur est approximativement divisée par quatre lorsque h est divisé par deux et τ est divisé par
quatre.

1.c) Nous remarquons que le schéma est stable pour N = 19 et τ = 0.00125 (figure de gauche), tandis qu’il est
instable pour N = 19 et τ = 0.0013 (figure de droite). La condition τ ⩽ h2/2 est violée dans ce deuxième cas.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8
x 10

−18

solution approchee
solution exacte

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6
x 10

4

solution approchee
solution exacte

Exercice 2

2.a) Le fichier fd2d.m implémente une méthode de différences finies en deux dimensions pour résoudre le problème{
−∆u(x, y) = 1 ∀(x, y) ∈ Ω,
u(x, y) = 0 ∀(x, y) ∈ ∂Ω,

avec Ω = [0, 1]× [0, 1].
2.b) En prenant des valeurs croissantes pour le paramètre L, on vérifie que le maximum de la solution converge. Un

exemple est donné par le tableau suivant :

L maxi,j |ui,j |
5 0.072115
10 0.072173
20 0.073257
40 0.073563
80 0.073643
160 0.073664
320 0.073670
640 0.073671
1280 0.073671

2.c) La valeur maximale du paramètre L dépend de la machine que vous utilisez, et éventuellement du logiciel que
vous utilisez. Par exemple, avec une machine équipée d’un processeur Intel Xeon E5-2620@2.1Ghz et 32Go de
mémoire RAM, Octave 3.8.1 retourne une erreur à partir de L = 4500 environ. Ceci est dû au fait que la place
mémoire nécessaire à la décomposition de Cholesky est O(L3), qui qui excède la mémoire RAM pour L = 4500.

