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Exercice 1

1.a) On pose u0
i = sin(πxi), i = 0, ..., N+1. Pour tout n ⩾ 0, étant donné un
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La relation ci-dessus nous permet également d’écrire :
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On a le schéma sous la forme Au⃗n+1 = u⃗n + τ f⃗(tn+1) avec :
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1.b) Le fichier MATLAB convdiff.m est complété de la manière suivante :

function [u]=convdiff(N,M,tau)
h=1/(N+1);
t=0;
epsilon = 1;
c0 = 10;
%
% condition initiale
%
for i=1:N

u(i)= sin (pi*i*h);
end
%
% remplissage de la matrice A
%
for i=1:N

a(i) =1+(2*tau*epsilon)/(h*h)+(tau*c0)/h;
end
for i=1:N-1

d(i) = (-tau*epsilon)/(h*h) -(tau*c0)/h ;
end
for i=1:N-1

c(i) = (-tau*epsilon)/(h*h);
end
%
% decomposition LU A = LU
%
c(1)=c(1)/a(1);
for i=2:N-1

a(i) = a(i)-c(i-1)*d(i-1);
c(i) = c(i)/a(i);

end
a(N) = a(N)-c(N-1)*d(N-1);

%
% schema d’Euler retrograde : A u^n+1 = u^n + tau f^{n+1}



%
for n=1:M

t=t+tau;
%
% second membre du systeme lineaire u^n + tau f^{n+1}
%

for i=1:N
u(i) = u(i)+tau*10*pi*cos(pi*i*h)*exp(-pi*pi*t);

end
%
% resolution du systeme lineaire Ly = u^n + tau f^{n+1}
%

u(1)=u(1)/a(1);
for i=1:N-1

u(i+1) = (u(i+1)-d(i)*u(i))/a(i+1);
end

%
% resolution du systeme lineaire U u^n+1 = y
%

for i=N-1:-1:1
u(i) = (u(i)-c(i)*u(i+1));

end
end
%Calcul de l’erreur
for i=1:N-1

err(i)=abs(u(i)-uex(i*h,M*tau));
end
supererror=max(err)
function u_exact = uex(x,t)
u_exact = exp(-pi*pi*t)*sin(pi*x);

1.c) On a les résultats suivants au temps t = 0.2 :

N + 1 h τ M Erreur
10 0.1 0.02 10 3.614635e-02
20 0.05 0.01 20 2.012016e-02
40 0.025 0.005 40 1.059199e-02
80 0.0125 0.0025 80 5.436055e-03

On note que, pour h et τ suffisamment petits, l’erreur est approximativement divisée par deux lorsque h est
divisé par deux et τ est divisé par deux. Le schéma est donc bien d’ordre h+ τ .

1.d) Pour n fixé, notons k un entier tel que
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j j = 0, 1, 2, ..., N + 1.

Supposons pour commencer que k est différent de 0 et que k est différent de N + 1. En prenant i = k et
f(x, t) = 0 dans (1), nous obtenons :(
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Et par suite un+1
k ⩾ un

k ⩾ 0.
Si k = 0 ou k = N +1, alors la relation ci-dessus est trivialement vraie. Si nous supposons que tous les un

j sont
positifs ou nuls, nous obtenons donc :
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j j = 0, 1, 2, ..., N + 1,

ce qui prouve que tous les un+1
j sont aussi positifs ou nuls.

Exercice 2
1.a)
On commence par calculer ∂F

∂ak
(⃗a, ω⃗, b⃗) :
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Soit A ∈ Rm×n, f⃗ ∈ Rm, pour k = 1, . . . , n on peut écrire :
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En définissant pour i = 1, . . . ,m, k = 1, . . . , n : Aik = 1

n relu(ωkxi + bk) et fi = f(xi), on obtient le résultat désiré.
De façon similaire, on obtient :
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où relu′(x) = 1 si x > 0, et 0 sinon.
1.b)
Le fichier est complété de la manière suivante :

function [a,w,b]=twolayersnorm(n,m,step,itmax)
pkg load statistics
% try with [a,w,b]=twolayersnorm(100,20,1,10000);
% goal: approach any function by sum_j a_j relu(w_j x + b_j)
% n: nb of relu functions
% m: nb of interpolation points
% a: contains the a_j
% w: contains the w_j
% b: contains the b_j

x=sparse(m,1);
y=sparse(m,1);
for i=1:m

x(i)=-1+2*i/(m+1);
y(i)=exp(-10*x(i)^2);

end

%a=(0,1,n,1);
%w=normrnd(0,1,n,1);
%b=normrnd(0,1,n,1);

a=-1+2*rand(n,1);
w=-1+2*rand(n,1);
b=-1+2*rand(n,1);
mata=sparse(m,n);
matw=sparse(m,n);
matb=sparse(m,n);

% gradient descent
for iter=1:itmax

for i=1:m
for j=1:n

mata(i,j)=relu(w(j)*x(i)+b(j));
matb(i,j)=a(j)*relup(w(j)*x(i)+b(j));
matw(i,j)=matb(i,j)*x(i);

end
end
mata=mata/n;
matb=matb/n;
matw=matw/n;
res=mata*a-y;
grada=mata’*res;
gradw=matw’*res;
gradb=matb’*res;
a=a-step*grada;
w=w-step*gradw;
b=b-step*gradb;
if (mod(iter,10)==0)

fprintf(" iter %d norm(grada) %e norm(gradw) %e norm(gradb) %e \n",iter,norm(grada),norm(gradw),norm(gradb));
plot(x,y,’+’,x,mata*a,’x’,-b./w,zeros(n,1),’o’);
xlim([-5 5]);
ylim([-0.5 1]);
refresh();



endif
end
end

function relu=relu(x)
if (x<0)

relu=0.;
else

relu=x;
endif

end

function relup=relup(x)
if (x<=0)

relup=0.;
else

relup=1;
endif

end

Dans la figure suivante, on observe l’approximation de la fonction. La convergence est très lente.


