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Exercice 1

1.a) On définit le lagrangien ∀x⃗, λ⃗ ∈ Rn

L(x⃗, λ⃗) = f(x⃗)−
n∑

i=1

λi(x⃗− c⃗)i

et on a
∂xL(x⃗, λ⃗) = Ax⃗− b⃗− λ⃗.

Les conditions KKT sont : ∃λ⃗∗ ∈ Rn tel que
Ax⃗∗ − b⃗− λ⃗∗ = 0,

x⃗∗ − c⃗ ⩾ 0,

λ⃗∗ ⩾ 0,
(x⃗∗ − c⃗)iλ

∗
i = 0 i = 1, . . . , n.

On introduit une variable supplémentaire s⃗ ∈ Rn tel que x⃗∗− c⃗ = s⃗ et le problème devient : on cherche x⃗∗ ∈ Rn,
λ⃗∗ ∈ Rn et s⃗ ∈ Rn tels que 

Ax⃗∗ − b⃗− λ⃗∗ = 0,
x⃗∗ − c⃗− s⃗ = 0,

siλ
∗
i = 0 i = 1, . . . , n,

λ⃗∗ ⩾ 0,
s⃗ ⩾ 0.

1.b) Le fichier est completé de la manière suivante :

function sol=intzero(n)
function [x_new,lambda_new,s_new]=quadip(n,eps)
% quadratic functional with inequality constraints solved with interior point method
% min 1/2 x^T A x -b^T x under the constraints x >= c
% the KKT conditions are (a slack variable s is added)
% Ax-b-lambda=0
% x-c-s=0
% s_i lambda_i = 0 i=1,...,n
% s>=0 and lambda>=0
% Newton method is used for the 3 first conditions
A = (n+1)*(n+1)*(sparse(2:n,1:n-1,-1,n,n)

+ sparse(1:n,1:n,2,n,n) + sparse(1:n-1,2:n,-1,n,n));
b = -ones(n,1);
c = -0.05*ones(n,1);
x_old=zeros(n,1);
s_old=max(eps,ones(n,1));
lambda_old=max(eps,ones(n,1));
for iter=1:100

mat1 = horzcat(A,-speye(n),sparse(n,n));
mat2 = horzcat(speye(n),sparse(n,n),-speye(n));
mat3 = horzcat(sparse(n,n),sparse(1:n,1:n,s_old,n,n),sparse(1:n,1:n,lambda_old,n,n));
mat = vertcat(mat1,mat2,mat3);
rhs1 = A*x_old-b-lambda_old;
rhs2 = x_old-c-s_old;
rhs3 = sparse(n,1);
for i=1:n
rhs3(i)=lambda_old(i)*s_old(i);
end
rhs = vertcat(rhs1,rhs2,rhs3);
sol=mat\rhs;
x_new=x_old-sol(1:n);
plot(x_new);pause();
lambda_new=max(eps,lambda_old-sol(n+1:2*n));
s_new=max(eps,s_old-sol(2*n+1:3*n));
discrep=norm(x_new-x_old)/norm(x_new);
printf ("iter: %d Discrepancy: %f \n",iter,discrep);
x_old=x_new;



lambda_old=lambda_new;
s_old=s_new;
if (discrep<0.0001)

break
end

end
end

1.c) On obtient les résultats suivants :

n ϵ nombre d’itérations
19 0.01 21
19 0.001 12
19 0.0001 9

n ϵ nombre d’itérations
9 0.0001 7
19 0.0001 9
39 0.0001 9
79 0.0001 8
159 0.0001 8

On observe que le nombre d’itérations dépend pas de n.

Exercice 2

2.a) L’image suivante représente le cas n = 2. La ligne rouge représente la contrainte x1+x2 = 1 et les lignes noires
représentent les droites −x1 + x2 = cste. En vert on voit le minimum cherché : x1 = 1, x2 = 0.

Pour n quelconque la solution est x1 = 1, x2 = · · · = xn = 0.
2.b) Soit f(x⃗) = c⃗T x⃗ avec c⃗T = [−1, 1, . . . , 1]. On définit le lagrangien ∀λ⃗∗ ∈ Rn, µ ∈ R

L(x⃗, λ⃗, µ) = f(x⃗)−
n∑

i=1

xiλi − µ(x1 + · · ·+ xn − 1).

On obtient

∂xL(x⃗, λ⃗, µ) = c⃗− λ⃗− µ

 1
...
1


et les conditions KKT sont :∃λ⃗∗ ∈ Rn, ∃µ∗ ∈ R tels que

c⃗− λ⃗∗ − µ∗

 1
...
1

 = 0,

x∗
1 + · · ·+ x∗

n − 1 = 0,
x∗
i λ

∗
i = 0 i = 1, . . . , n,

x⃗∗ ⩾ 0,

λ⃗∗ ⩾ 0.

2.c) Le fichier est completé de la manière suivante :



function x_new=linprogip(n,eps)
% linear programming solved with interior point method
% min c^T x under the constraints A x = b and x>=0
% the KKT conditions are
% c-A^T mu -lambda = 0
% A x -b = 0
% x_i lambda_i = 0 i=1,...,n
% x>=0 and lambda>=0
% Newton method is used for the 3 first conditions
p=1;
A=ones(p,n);
b=sparse(p,1);
b(1)=1;
c=ones(n,1);
c(1)=-1;
x_old=max(eps,zeros(n,1));
lambda_old=max(eps,zeros(n,1));
mu_old=zeros(p,1);
for iter=1:10

mat1 = horzcat(sparse(n,n),-speye(n,n),-A’);
mat2 = horzcat(A,sparse(p,n),sparse(p,p));
mat3 = horzcat(sparse(1:n,1:n,lambda_old,n,n),sparse(1:n,1:n,x_old,n,n),sparse(n,p));
mat = vertcat(mat1,mat2,mat3);
rhs1 = c-A’*mu_old-lambda_old;
rhs2 = A*x_old-b;
rhs3 = sparse(n,1);
for i=1:n
rhs3(i)=x_old(i)*lambda_old(i);
end
rhs = vertcat(rhs1,rhs2,rhs3);
sol=mat\rhs;
x_new=max(eps,x_old-sol(1:n));
lambda_new=max(eps,lambda_old-sol(n+1:2*n));
mu_new=mu_old-sol(2*n+1:2*n+p);
discrep=norm(x_new-x_old)/norm(x_new);
printf ("iter: %d Discrepancy: %f \n",iter,discrep);
x_old=x_new;
lambda_old=lambda_new;
mu_old=mu_new;
if (discrep<0.001)
break
end

end
end

2.d) On obtient les résultats suivants :

n ϵ nombre d’itérations
19 0.01 5
19 0.001 4
19 0.0001 4

n ϵ nombre d’itérations
9 0.0001 4
19 0.0001 4
39 0.0001 4
79 0.0001 4
159 0.0001 4

On observe que le nombre d’itérations dépend pas de n.


