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Exercice 1
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En définissant Aji = φi(xj) et bj = yj avec j = 1, . . . ,m et i = 1, . . . , n, on obtient f(α⃗) = 1
2 ||Aα⃗− b⃗||2.

Dans le cours on a vu que ∇f(α⃗) = AT (Aα⃗− b⃗) et donc α⃗∗ satisfait la relation requise.
1.b) Le fichier est completé de la manière suivante :

function neurls(N,M)
% N : nb of neurons
% M : nb of interpolation points
% mat: the rectangular matrix corresponding to the least square problem
% val: the values at interpolation points
% weight : the weights of the neural network

xinterp=zeros(M,1);
val=zeros(M,1);
for j=1:M

xinterp(j)=j/(M+1);
val(j)=1+tanh(100*(xinterp(j)-0.5));

end

mat=zeros(M,N);

for i=1:N
for j=1:M

mat(j,i) = basis(N,i,xinterp(j));
end

end
weight=(mat’*mat)\(mat’*val)

% plot results
xx=zeros(100,1);
yy=zeros(100,1);
for k=1:100

xx(k)=k/101;
yy(k)=sumbasis(N,weight,xx(k));

end
axis([0 1 -1 1]);
plot(xinterp,val,’o’,xx,yy);
refresh();

end
function sumbasis=sumbasis(N,weight,x)

sumbasis=0;
for i=1:N

sumbasis=sumbasis+weight(i)*basis(N,i,x);
end

end

function basis=basis(N,i,x)
basis=max(0,x-i/(N+1));

end

1.c) On va comparer f(x) et
∑n

i=1 α
∗
iφi(x) à l’aide des plots suivantes



On observe que plus grand n mieux f(x) est approximé par
∑n

i=1 α
∗
iφi(x).

Remarque : Cet exercice s’inspire par un résau de n neurone à une couche avec des fonctions d’activation de
type relu (relu(x) = max(0, x)).

Exercice 2

2.a) En utilisant les propriétés de cosinus on a

λn = 2(1− cos(
nπ

n+ 1
)) = 2(1− cos(π − π

n+ 1
)) = 2(1 + cos(

π
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)).

On utilise la formule de Taylor à l’ordre 2 autour de zéro :

cos(x) = 1− x2
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et on obtient
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On a donc que
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1

n2
)) = 4−O(

1

n2
).

D’après le théorème de cours on a convergence si
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Donc la méthode converge si α ⩽ 1
2 .



2.b) La méthode du gradient à pas optimal est implementée de la manière suivante :

function [i,x]=gradopt(N)
I=speye(N,N);
diag = 2*I;
subd=-sparse(2:N,1:N-1,1,N,N);
A=diag+subd+subd’;
b=ones(N,1);
x=zeros(N,1);
for i=1:100000

p=b-A*x;
alpha= dot(p,p)/dot(p’,A*p);
x=x+alpha*p;
if (norm(p)<1.e-6)

break
end

end

2.c) On complète le tableau à l’aide des deux programmes. On observe que pour les deux méthodes si on multiplie
n par 2, le nombre d’itérations est multiplié par 4 et donc le nombre d’itérations est bien O(n2). On observe
aussi que la méthode du gradient à pas constant ne converge pas avec α = 0.6 et que avec α optimal le nombre
d’itérations est plus petite que avec les autres valeurs de α.

n α = 0.1 α = 0.49 α = 0.6 α optimal
9 1511 304 - 293
19 6169 1254 - 1235
39 25223 5142 - 5109
79 103120 21040 - 20983


