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Exercice 1

1.a) Multiplions la premiére équation du probléme (0) par une fonction v une fois contintiment dérivable sur [0, 1].

1.b)

En intégrant sur 'intervalle [0, 1] nous obtenons

- /01 ' (x)v(x)dr = /01 f(x)v(z)da.

En intégrant par parties la premiére intégrale de cette équation, nous obtenons

| @ @i -pepers = [ e,

Sinous imposons a la fonction v d’étre nulle en « = 1, en utilisant le fait que w’(0) = 0 nous arrivons a I’équation
1 1
/ o (2)v' (z)dw = / f(x)v(x)dz.
0 0

Soit V' I’ensemble des fonctions continues g : [0,1] — R, de premiére dérivée ¢’ continue par morceaux et telles
que g(1) = 0. La formulation faible de (0) consiste a trouver u € V tel que

1 1
/ o () (z)dr = / f(x)v(z)dz, pour toute fonction v € V. (1)
0 0

La représentation graphique des fonctions de base ¢;,7 = 0,..., N est la suivante :
1 Po 1 2 ¥3 ©N
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Nous notons V}, le sous-espace vectoriel de V' engendré par les fonctions ¢;,7 = 0, ..., N. L’approximation de
Galerkin correspondant au probléme (1) consiste & trouver uy € Vj, tel que

1 1
/ up, (z)v), (z)de = / f(x)vp(z)dz, pour toute fonction v, € V,. (2)
0 0

Comme nous cherchons u; dans V},, nous pouvons écrire
N

un() = uipi(),
i=0

les coefficients u;, ¢ = 0,..., N étant les inconnues du probléme. En choisissant v;, = ¢;, j = 0,1, 2,
(2), nous obtenons le systéme de N + 1 équations & N + 1 inconnues suivant :

(A%mmwwﬁzéUm%mm,j

..., N dans

N

>

=0

0,2,...,N.



Ces relations peuvent s’écrire sous la forme d’un systéme linéaire. Soit A la (N + 1) x (N + 1)-matrice de
coefficients A;;, 0 < 4,5 < N et soit f le (N + 1)-vecteur de coefficients f;, 0 < j < N définis par :

1 1
A= @ e f= [ e
Alors le probléme (2) est équivalent a trouver le (N + 1)-vecteur @ tel que
=f

Les seuls coefficients non-nuls de A sont les coeflicients A;;, 7 =0, ..., N, les coefficients A; j 11,5 =0,...,N—1
et les coefficients 4,41, j=0,...,N — 1. Comme Aj; = A;; il suffit de calculer A;; et A; ;41 :

A

S

Tj+1

Aﬁa[iwuwm+/ (@y(@)?dz, j=1,..N.

Ji— Tj

1
oo = [ (i)
o
et
it / / .
Aj,j-‘rl = / ¢j(x)¢]+l(m)dx7 J =Y. ,N -1
Zj

De méme nous avons

fj:/vj f(@@j(ﬂda:%—/ " fl@)pj(x)de, j=1,...,N.

J

et

h5f7@%mm

l.c) Ona A;; = %, Aj i1 = —% pour j=1,...,Net Apg = % Pour approcher les intégrales des coefficients de f,
nous utilisons la formule du trapéze :

Tht Tyl — T
| gt = I () + glansn),
Tk

ot g : [0,1] — R est continue. On trouve donc

/W F@)p; @)z ~ hf(z)) = f5, j=1,... N

j—1

et

1
| 1@ty ~ 3 ) = o

z
Le systéme linéaire A% = f est donc bien celui recherché avec o = + fo = 1 f (o).

1.d) La formule
U—1 — U1
2h
vient de la condition de bord w/(0) = 0 qu’on approche par une formule de différences finies centrées. La
deuxiéme formule

=0

—U_1 + 2ug — uq

12 = f(o)
vient de I’équation —u"(z) = f(x) qu’on approche au point z par une formule de différences finies centrées. En
utilisant ces deux formules, et en appliquant le schéma de différences finies centrées pour les indices ¢ = 0,..., N

on trouve
—Ui—1 + 2u; — Uiy
12
—u1 + Ug 1
e~ alt)
UN+1 = 0.

:f(xl), izl,...,N,



Le systéme linéaire correspondant est le suivant :

1 -1 1o 1 f(ao)
o2 0 Z; Qf(xlg
oz 2 2| ) |

0 -1 2 u;v; f(zN)

donc c’est le méme que celui qu’on a trouvé en 1.c).

Exercice 2

A est symétrique, car a;; = aj; pour tout ¢, j.
De plus, si & € RV \ {0} a les valeurs
T = (1‘1,.132, ...,xN)

vous pouvez alors montrer, que
ST A= 2 2 2 2 2
TTAZ = a7+ (11 —22)* + (x2 —x3)" + ... + (xy—1 —ZN)° + 2%

qui est non négative (strictement plus grande que 0) en tant que somme de carrés, et nulle que si tous les éléments
de 7 sont nuls.



