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Exercise 1. À faire vous-même.

Exercise 2. Supposons que G admette un unique p-sous-groupe de Sylow P . Comme gPg−1

est un sous-groupe de même cardinalité que P pour tout g ∈ G, on doit avoir gPg−1 = P pour
tout g ∈ G, c’est-à-dire que P est normal dans G. Réciproquement, supposons que P soit un
p-sous-groupe de Sylow normal dans G. Soit Q un autre p-sous-groupe de Sylow. Alors, il existe
g ∈ G tel que Q = gPg−1 = P , ce qui montre l’unicité souhaitée.

Exercise 3. Comme l’ordre de tout élément de P est une puissance de p et que l’ordre de tout
élément de Q est une puissance de q, on a P

⋂
Q = 1. De plus, P et Q sont normaux dans G

par l’exercice précédent. Par le deuxième théorème d’isomorphisme, on a PQ/Q ∼= P/(P
⋂
Q)

et ainsi |PQ| = |P ||Q|
|P

⋂
Q| = |P ||Q| = |G|. On obtient donc que PQ = G. On conclut en utilisant

le fait que si P,Q sont normaux dans G, PQ = G et P
⋂
Q = 1, alors G ∼= P ×Q.

Exercise 4. Observons d’abord que |A5| = 60 = 22 ·3 ·5. Il suit du troisième théorème de Sylow
que n2, le nombre de 2-sous-groupes de Sylow de A5, satisfait n2 = [A5, NA5(P )] pour tout 2-
sous-groupe de Sylow P . L’ordre des 2-sous-groupes de Sylow sont les sous-groupes d’ordre 4.
Considérons le groupe de Klein V4 = {1, (12)(34), (13)(24), (14)(23)}, vu à l’exercice 4, feuille
7, qui satisfait

V4 ◁ A4 ≤ A5.

Ceci est un 2-sous-groupe de Sylow de A5. Les permutations de ce groupe fixent toutes l’élément
5, et il existe quatre autres sous-groupes de cette forme, qui fixent respectivement les éléments
1, 2, 3 et 4. Il y a donc au moins cinq 2-sous-groupes de Sylow de A5. Mais comme V4 ◁ A4 est
normal, on a A4 ≤ NA5(V4). Il suit que n2 = 60/|NA5(V4)| ≤ 60/|A4| = 60/12 = 5. Nous avons
trouvé cinq 2-sous-groupes de Sylow distincts de A5, et nous venons de montrer qu’il ne peut
pas y en avoir plus, ce qui prouve que nous les avons tous trouvés.

Exercise 5. L’exercice découle du premier théorème de Sylow et du lemme suivant appliqué à
un p-sous-groupe de Sylow.

Lemme 5.1 : Soit G un groupe d’ordre pn pour un certain n > 0, alors G contient un sous-
groupe normal d’ordre pk pour tout k tel que 0 ≤ k ≤ n.

Preuve du Lemme : Rappelons qu’un groupe d’ordre pr a un centre non trivial pour tout
r > 0 (exercice 2.1 série 4). En utilisant une induction sur n, nous obtenons le lemme pour
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G/Z(G). Nous pouvons ensuite conclure par induction et le théorème de correspondance. Nous
laissons au lecteur le soin de remplir les détails nécessaires.

Exercise 6. (1) Soit P un p-sous-groupe de Sylow de G et considérons l’action de H sur
l’ensemble des classes à gauche G/P par multiplication à gauche. Nous avons donc
l’équation suivante :

|G/P | =
∑

Orbites H·x

|H|
|StabH(x)|

.

Notez que |G/P | est un entier premier avec p puisque P est un p-sous-groupe de Sylow.
Puisque p | |H|, cela implique qu’il existe gP ∈ G/P tel que StabH(gP ) = H. Ainsi,
hgP = gP pour tout h ∈ H et donc gHg−1 ⊂ P . Cela montre que H ⊂ gPg−1, qui est
un p-sous-groupe de Sylow de G.

(2) Nous montrons dans la preuve de la dernière partie que, étant donné un p-sous-groupe
de Sylow P et un sous-groupe H d’ordre pk, il existe g ∈ G tel que gHg−1 ⊆ P . Si H
est un sous-groupe normal de G, cela implique que H ⊆ P pour tout p-sous-groupe de
Sylow P ⊆ G.

Exercise 7. Soit g ∈ G, alors comme K est un sous-groupe normal de G, nous obtenons que
gPg−1 ⊆ gKg−1 = K. Comme gPg−1 est également un p-sous-groupe de Sylow de K, nous
obtenons par le deuxième théorème de Sylow qu’il existe k ∈ K tel que kPk−1 = gPg−1.
Cela implique que (gk−1)P (gk−1)−1 = P et donc gk−1 ∈ NG(P ). Nous obtenons ainsi que
G = KNG(P ). □

Exercise 8. L’exposant de p dans la décomposition en nombres premiers de pr! est p
pr−1
p−1 . En

effet, pour trouver la valeur souhaitée, il faut compter le nombre de multiples de pk qui sont
inférieurs à pr pour 0 < k ≤ r. Pour pk, ce nombre est pr−k, donc leur somme est

r∑
k=1

pr−k =

r−1∑
k=0

pk =
pr − 1

p− 1
.

Ainsi, p
pr−1
p−1 divise pr! et c’est la puissance maximale ayant cette propriété. Montrons maintenant

par induction que

|Spr | = p
pr−1
p−1 .

Pour r = 1, l’ordre est p. Supposons que l’égalité soit vraie pour k < r. Il suffit d’observer que

|Spr | = p|Spr−1|p.

Ceci conclut la preuve.

Exercise 9. Commençons par considérer la décomposition en nombres premiers |G| = 48 =
24 · 3. Par le théorème 10 des notes de cours, nous savons que le nombre n2 de 2-sous-groupes
de Sylow doit satisfaire à la fois n2 = 1 (mod 2) et n2|3. Par conséquent, nous savons que
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n2 ∈ {1, 3}. Si n2 = 1, alors le 2-sous-groupe de Sylow unique P2 est normal dans G car les
2-sous-groupes de Sylow sont conjugués les uns aux autres. Si n2 = 3, considérons l’action de
G sur l’ensemble des 2-sous-groupes de Sylow de G. Puisqu’il s’agit d’une action de G sur un
ensemble à 3 éléments, cela correspond à un homomorphisme de groupes φ : G → S3. Par le
premier théorème d’isomorphisme, nous obtenons que G/ ker(φ) ∼= im(φ). Mais comme tous les
2-sous-groupes de Sylow sont conjugués, φ n’est pas l’application triviale, ce qui signifie que
ker(φ) ̸= G. Puisque le noyau ne peut pas être trivial (en raison des contraintes de taille), il
s’ensuit que 1 ̸= ker(φ) ◁ G est un sous-groupe normal non trivial.


