
THÉORIE DES GROUPES 2024 - 25, SOLUTIONS 8

Exercise 1. À faire vous-même.

Exercise 2. (1) 1 ◁ Z est une série sous-normale avec des quotients abéliens ;

(2) 1 ◁ Z/3Z ◁ S3 est une série sous-normale avec des quotients abéliens ;

(3) exercice 4 de la semaine dernière ;

(4) exercice 7 de la semaine dernière ;

(5) c’est immédiat par la proposition 26 des notes du cours.

Exercise 3. On observe que le groupe dérivé d’un produit de groupes est le produit des groupes
dérivés :

[H ×G,H ×G] = [H,H]× [G,G].

Avec les notations habituelles, on obtient alors par induction que (H ×G){i} = H{i} ×G{i} et
donc cette suite devient le groupe trivial à l’indice max(n,m), où n et m sont les indices lorsque

H{i} et G{i} deviennent le groupe trivial, respectivement.

Exercise 4. (1) Notez que la conjugaison par tout élément du groupe G nous donne un
automorphisme de G. Ainsi, siH est un sous-groupe caractéristique de G, alors gHg−1 =
H, pour tout g ∈ G, donc H est normal.

(2) Premièrement, observons que si ϕ est un automorphisme de G, alors ϕ(Z(G)) ⊂ Z(G).
En effet, soit a ∈ Z(G) et g ∈ G quelconque. Nous voulons montrer que ϕ(a)g = gϕ(a)
pour conclure par le choix arbitraire de a et g. Comme ϕ est un automorphisme, ϕ est
en particulier surjective et donc il existe h ∈ G tel que ϕ(h) = g. On en déduit que
ϕ(a)g = ϕ(a)ϕ(h) = ϕ(ah) = ϕ(ha) = ϕ(h)ϕ(a) = gϕ(a) et nous avons terminé. Pour
l’inclusion réciproque, appliquez le même raisonnement à l’automorphisme inverse ϕ−1

pour obtenir Z(G) = ϕ(Z(G)), c’est-à-dire que Z(G) est un sous-groupe caractéristique
de G.

(3) Encore une fois, observons que si ϕ est un automorphisme de G, nous avons ϕ([G,G]) ⊂
[G,G]. En effet, soit un commutateur [a, b] ∈ [G,G] et remarquons que ϕ([a, b]) =
[ϕ(a), ϕ(b)] ∈ [G,G]. Comme ϕ−1([G,G]) est un sous-groupe de G qui contient tous
les commutateurs par l’argument précédent, il doit contenir le sous-groupe engendré
par ces éléments, c’est-à-dire [G,G], donc ϕ([G,G]) ⊂ [G,G]. En appliquant le même
raisonnement à l’automorphisme inverse ϕ−1, nous pouvons conclure.

Exercise 5. Puisque G est un p-groupe fini, nous savons par le cours que |G| = pn pour un
certain n ∈ N. Nous prouvons que G est résoluble par induction sur n. Si n = 1 alors G ∼= Z/pZ
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est résoluble. Si n > 1 nous savons que le centre Z(G) est non trivial (exercice 2, feuille 4), de
sorte que G/Z(G) est un p-groupe d’ordre pk pour un certain k < n. Par induction, ce quotient
est résoluble. Comme Z(G) est abélien, il est également résoluble. Il s’ensuit que G est résoluble,
étant une extension de deux groupes résolubles :

1 → Z(G) → G → G/Z(G) → 1.

Exercise 6. (1) Comme G est simple, toute série sous-normale de G doit être donnée par
1 ◁ G et comme G est résoluble, G/1 ∼= G doit donc être abélien. Comme G est simple
et abélien, G doit être cyclique d’ordre premier.

(2) Par définition, chaque facteur de composition de la série de composition de G est simple.
C’est aussi un quotient d’un sous-groupe de G, donc il est résoluble et par le point
précédent nous en déduisons que chaque facteur doit être isomorphe à Z/pZ pour un
certain nombre premier p. Il existe un nombre fini de facteurs de composition, disons
Z/p1Z, . . . ,Z/pnZ pour un certain n, et donc |G| =

∏n
i=1 pi, donc G est fini.

(3) ” ⇐= ” Trivial, car dans ce cas la série de composition nous dit précisément que G est
résoluble.
” =⇒ ” Par le même argument utilisé en (2), chacun des facteurs de composition doit
être résoluble et simple, donc cyclique d’ordre premier.

Exercise 7. Pour montrer que le groupe B des matrices triangulaires supérieures 2× 2 inver-
sibles sur un corps k est résoluble, nous devons construire une série sous-normale pour B où
chaque quotient est abélien. Nous définissons un sous-groupe normal U ◁ B par

U :=

{(
1 b
0 1

) ∣∣∣∣∣ b ∈ k

}
.

Ce sous-groupe U est clairement isomorphe au groupe additif (k,+) qui est abélien. De plus, U
est normal dans B par un calcul direct.

Nous affirmons que ce qui suit forme une série sous-normale pour B avec des quotients
abéliens :

{I} ◁ U ◁ B.

Comme U est abélien, nous devons seulement observer que B/U est abélien. Définissez une
application B → k× × k× par (

a b
0 d

)
7→ (a, d).

Il s’agit d’un homomorphisme de groupes surjectif dont le noyau est précisément U (ce qui
peut être utilisé pour montrer que U est normal sans calculs). Par le théorème du premier
isomorphisme, B/U ∼= k× × k× qui est abélien. Cela conclut la preuve.

Exercise 8. (1) Soit α ∈ Sn un élément non trivial et soit α = α1 · α2 · . . . · αk sa

décomposition en cycles disjoints (non-identité). Écrivons α1 = (a1, a2, . . . , am) avec
m ≥ 2. Si m ≥ 3, posons β = (a1, a2) et observons que

α−1βα = (α(a1), α(a2)) = (α1(a1), α1(a2)) = (a2, a3) ̸= β.
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Ainsi, αβ ̸= βα, ce qui prouve que α n’est pas dans le centre de Sn. Maintenant, si
m = 2, le cycle est α1 = (a1, a2), et posons β = (a1, a2, a3) pour un certain a3 ̸= a1, a2.
Alors on observe que

α−1βα = (α(a1), α(a2), α(a3)) = (α1(a1), α1(a2), α(a3)) = (a2, a1, b)

pour b = α(a3) différent de a1 et a2. Ainsi, α
−1βα ̸= β, ce qui prouve que α n’est pas

dans le centre de Sn.

(2) Soit 1 ̸= σ ∈ H un élément non trivial. Puisque H ∩ An = 1, nous savons que σ peut

être écrit comme un produit impair de transpositions, donc σ2 ∈ An. Étant donné que
σ2 ∈ H également, cela prouve que σ2 = 1. Maintenant, si τ ∈ H est un autre élément
non trivial, il peut également être écrit comme un produit impair de transpositions,
donc στ ∈ An. Cela implique que στ = 1, donc τ = σ−1 = σ, et ainsi H = {1, σ}.

(3) Comme le centre de Sn est trivial, il existe τ ∈ Sn tel que τ−1στ ̸= σ. Mais puisque
H est normal dans Sn, nous avons que τ−1στ ∈ H = {1, σ}, et donc τ−1στ = 1. Cela
implique que σ = 1, ce qui contredit le fait que σ est non trivial.

(4) Puisque H ◁Sn, nous avons que H ∩An ◁An. Nous avons vu en classe que An est simple,
donc soit H ∩ An = 1, soit H ∩ An = An. Le premier cas est exclu par les deux points
précédents. Dans le second cas, cela implique que An ⊆ H ⊂ Sn. Par le théorème de
correspondance, H correspond à un sous-groupe de Sn/An

∼= Z/2Z. Comme ce groupe
n’a pas de sous-groupe non trivial, nous obtenons que soit H = An, soit H = Sn comme
désiré.


