THEORIE DES GROUPES 2024 - 25, SOLUTIONS 6

Exercise 1. A faire vous-méme.

Exercise 2. (1) Pour l'ordre 180 :
— Factorisation de 180 :
180 = 22.32. 5.

— Par le théoreme de classification des groupes abéliens finis engendrés, tout groupe
abélien G d’ordre 180 se décompose en une somme directe de groupes cycliques
correspondant a ces puissances de nombres premiers.

— Pour la partie 2 (ordre 22 = 4), les groupes possibles sont Z; ou Zg x Zs.
— Pour la partie 3 (ordre 32 = 9), les groupes possibles sont Zg ou Zs3 x Zs.
— Pour la partie 5 (ordre 5), la seule option est Zs.

— Ainsi, les classifications possibles pour G sont :
G =27y XLy XLy, Ly X Lo X Ly X Ls,
Lo X iy X Uy X Xz X Ly et G = Zo X Ly X Lg X L.
(2) Pour l'ordre 72 :
— Factorisation de 72 :
72 =23.3%
— Les structures possibles pour la partie 2 (ordre 2% = 8) sont :
. Zg
— 7y X 7o
— Do X g X Lo
— Les structures possibles pour la partie 3 (ordre 32 = 9) sont :
— 7
— 43 X Zs3
— En combinant ces éléments, les classifications possibles pour G sont :
G = 7Zg XLy, ©7Zgx1ZLgxLs, ZLyXLoX Ly,
Ty X Do X Uiy X Ly, Tg X Lo X Ty X Ly, €t g X Lo X Lig X Xz X L.
(3) Pour I'ordre 200 :

— Factorisation de 200 :
200 = 23 - 52.

— Les structures possibles pour la partie 2 (ordre 2% = 8) sont :
7
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7Z4XZQ
7ZQXZ2XZQ

— Les structures possibles pour la partie 5 (ordre 52 = 25) sont :

— En combinant ces éléments, les classifications possibles pour G sont :
GgZ8 ><Z25, Zg ><Z5 XZ5, Z4 XZQ XZ25,
Z4><ZQ><Z5><Z5, ZQXZQXZQXZQ5, et ZQXZQXZQ><Z5XZ5.

Exercise 3. (1) Nous avons 100 = 22-52. Si A n’a pas d’élément d’ordre 4, alors A ne peut
pas avoir de sous-groupe isomorphe a Z /47, donc ce dernier ne peut pas apparaitre dans
la décomposition de A donnée par le théoreme de classification des groupes abéliens finis.
Ainsi, A doit étre isomorphe a 'un des groupes suivants :

Z)2L X L)27 x L)25Z ou L)27 x L)27 x Z|5Z x Z |57
En particulier, A posséde un sous-groupe isomorphe a Z/27Z x 7./27.
(2) Par le théoreme de classification des groupes abéliens finis, les groupes abéliens d’ordre
p® sont, & isomorphisme pres, les suivants :
Z/p°ZL, LJpZ x L/p 7, 7./pZ x L/pZ x L/p°Z
Z/pZ x LJpZ x L/pZ x T)p*Z, Z)pZ x L/pZ x L|pZ x L]pZ x T/ pZ
Z/pZ x L]p*Z x L)p*Z., Z]p*Z x Z]p*Z
Ainsi, il existe exactement 7 de ces groupes. Chacun d’entre eux correspond a une
partition de 'entier 5, c’est-a-dire le nombre de manieres différentes d’écrire n comme

une somme d’entiers positifs. Par le méme théoreme, nous pouvons vérifier que le nombre
de groupes abéliens d’ordre p™ correspond au nombre de partitions de ’entier n.

Exercise 4. (1) Remarquons que comme chaque Tors(A,) est un sous-groupe de A,, nous
avons que
@ Tors(Aq)
aecl

est un sous-groupe de @ A, et par définition, il en est de méme pour
aecl

Tors(@ Aq).
acl

Nous allons montrer qu’ils sont les mémes ensembles. Soit (aq)acr € Tors(P,c; Aa). 11
existe donc un entier n > 0 tel que n(aq)aer = 0. Ainsi, pour tout o € I, nous obtenons

que na, = 0 et par conséquent a, € Tors(A,). Par suite, (aq)acr € € Tors(Ay) et
ael

Tors(@ Ay) C @ Tors(Ag).

a€cl ael
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Réciproquement, si
(aa)acr € @ Tors(Aq),
ael
alors pour chaque « € I, soit n, le plus petit entier strictement positif tel que nqas = 0.
Comme tous les a,, sauf un nombre fini sont égaux a 0, il en résulte que tous les n,, sauf un
nombre fini valent 1, et nous pouvons donc définir n = I1,n,. Puisque n((aq)acr) = 0,
nous obtenons que (aq)acr € Tors(P,c; Aa)-

(2) La démonstration de la premiere inclusion pour les sommes directes reste valable dans
le cas des produits directs.

Soit A = [] Z/nZ. Alors (1,1,1,...) € [] Tors(Z/nZ) mais on vérifie que
n>1 n>1

(1,1,1,...) ¢ Tors(H Z/nZ).

n>1

Exercise 5. Définissons 'homomorphisme ¢ : Z — Z/p{*Z x Z/py*Z X - - - X L/py*Z par

¢(z) = ( mod p{*,z mod p3?, ...,z mod pi*) ,
qui associe & chaque entier z ses classes d’équivalence modulo p{*, p5?, ..., pp*. D’apres le premier
théoreme d’isomorphisme,
Z/ ker() = im(9).
Le noyau est constitué de tous les entiers x tels que
¢(x) = (0,0,...,0).
Cela signifie que z = 0 (mod p{*) pour chaque ¢ = 1,2,..., k. Par conséquent, = doit étre un

multiple de d = p{'p3?...pp*, car c’est le plus petit entier divisible par chacun des pj. Ainsi,
ker(¢) = dZ.
Pour montrer que ¢ est surjective, considérons un élément arbitraire (y1,y2,...,yx) dans

Z|pT L X L/pS?Z X - - - X L[ py*F .
Nous devons trouver un entier x € Z tel que
r=vy; (modp!) pourchaquei=1,2,..., k.
Pour chaque i, définissons

d . .
/ a1 Aj—1 _  Aj+41 ag
pi—ﬁ—pl ~~pi11pz’j_1 <o Prs

1

qui est premier avec p;*. Par le lemme de Bézout, il existe un entier b; tel que
(1) pib; =1 (mod p*).
Définissons alors
/ / /
T = y1p1b1 + yopabo + - - - + Yy by
Cet élément z vérifie ¢(x) = (y1,...,yx) en utilisant (1) et le fait que p; = 0 (mod p?j) pour

tous i # j.
Ainsi, ¢ est surjectif, ce qui conclut la démonstration.
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Exercise 6. (1) Considérons le groupe Z/37Z. Clairement, puisque 3z = 0 pour tout = €
Z/3Z, ce groupe n’est pas 3-divisible. Cependant, comme 2-1 =2 et 2-2 = 1, on voit
qu’il est 2-divisible.

(2) Nous donnons deux exemples :

— Le produit Q x Z/37Z est clairement infini, 2-divisible, mais pas 3-divisible.

— Considérons le groupe (additif) Zs := {5;]a,i € Z,2{ a} ({0} € Q. Premiérement,
prouvons que c’est bien un (sous)groupe (de Q). Par définition, il contient claire-
ment I'élément neutre et tous les inverses de ses éléments. Vérifions qu’il est stable
par addition : pour ¢ < j :

a b a2’ =t +b

Y 5, 2
car a2/ ~% + b est impair. Sii = j et a = —b, alors
a b
? + 27 =0¢€Zy

Sii=jeta# —b, écrivons a4+ b = c2¥ avec 21 c et k> 1. On a alors
a b a+b c
2t 2 27 21—k
donc ce dernier est bien un groupe.
Observons que Zo n’est pas 3-divisible car % & Zo et donc il n’y a pas d’élément
x € Zo tel que 3x =1 € Zy. La 2-divisibilité est évidente.
(3) (Q,+) est un tel exemple.

(4) Nous donnons deux preuves :

€ Zs

— Soit n = |G| le cardinal de G et soit g € G. Puisque g est n-divisible, il existe
go € G tel que g = ngp. Mais pour tout élément, on a ngy = 0 (puisque l'ordre
o(go) divise n, ngo = ko(go)go = 0 pour un certain k € N).

— Supposons par contradiction que G est fini, divisible, non-trivial et soit 0 # g € G.
Notons n := |G| = pi* ... plm avec p1, . . ., pm des nombres premiers distincts et tous
n; > 1. En appliquant inductivement la p;-divisibilité, il existe g; tel que pj*g1 =g
et g; pour i = 2,...,m tel que p;"g; = gi—1. En particulier, on a 0 = ng,, = g # 0,
ce qui est absurde.

Exercise 7. Nous devons trouver des groupes abéliens de type fini G & isomorphisme pres qui
s’inserent dans la suite exacte

0-25%aL 2122 0.

Nous affirmons que de tels G sont donnés a isomorphisme pres par Z x Z/dZ pour d | 12. Comme
G est de type fini, il est isomorphe & F x T ol F est un groupe libre isomorphe & Z! pour un
certain [ > 0 et T est un groupe de torsion.

Notez que Ker f = Imi = Z et n’a donc pas de torsion. Ainsi, nous obtenons que f|, est
injectif. Par conséquent, T" est isomorphe & un sous-groupe de Z/12Z. Donc

T~ 7/dZ.
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oud |12.

Si nous restreignons la suite exacte & F' x {0}, nous obtenons que F' surjecte sur un groupe
abélien fini et a un noyau isomorphe a Z. Nous laissons le lecteur se convaincre que cela implique
que le rang du groupe abélien libre F' est 1. Ainsi, nous obtenons que G = Z x Z/dZ pour un
certain d | 12.

Il reste & montrer que pour chaque d | 12 il existe une suite exacte de la forme

0252z xz/dz L 2122 — 0.

Pour cela, soit d' = 12 et soit f : Z x Z/dZ — Z/12Z, (a,b) — a + d'b+ 12Z. Notez que f
est une surjection et que son noyau n’a pas d’éléments de torsion non triviaux. Comme Ker f
n’a pas de torsion et Ker f C Z x Z/dZ, il découle du théoréme de classification des groupes
abéliens de type fini que Ker f = Z. Ainsi, nous obtenons une suite exacte comme ci-dessus.

Exercise 8. (1) Soit x € G tel que = # e. Par le théoreme de Lagrange, 'ordre de x divise
I'ordre de G, donc l’ordre de z est p* pour un certain 1 < k < n. On peut alors vérifier
que 27" est un élément d’ordre p.

(2) Procédons par récurrence sur k. Pour k& = 0, {e} est un sous-groupe normal d’ordre
p° = 1de G. Si k = n, G lui-méme est un sous-groupe normal d’ordre p™. Supposons que
0 < k < n et qu'il existe un sous-groupe normal N de G d’ordre p*~!. Alors G/N est un
p-groupe non trivial. Par I'exercice 2 de la feuille 4 (la méme démonstration fonctionne)
et Lagrange, Z(G/N) # 0 et contient donc un élément N d’ordre p. Considérons
’homomorphisme quotient 7 : G — G/N et prouvons que 7 '((zN)) est un sous-
groupe normal d’ordre p* de G. Ces faits découlent des observations suivantes : comme
(xN) < Z(G/N), (xN) est un sous-groupe normal de G/N et donc I'image réciproque
par 7 est un sous-groupe normal de GG. De plus, par le premier théoréeme d’isomorphisme,
nous trouvons que |t~ ({(xN))| = [{(xN)| - |[Ker(m)| = pF.

(3) Nous construisons la chaine souhaitée par récurrence, on Gy < Gj_1 est normal pour
tout 1 < k < n et |Gyl = p"* pour tout 0 < k < n. Soit Gp = G et k > 0. Par
récurrence, nous avons Gj_; d’ordre p"~**+1. Par (ii), il existe un sous-groupe normal
Gy < Gj_1 d’ordre p"~*. De plus, pour tout k, Uordre de Gj/Gy_; est égal & p, donc
tous les quotients sont cycliques, donc abéliens.



