
THÉORIE DES GROUPES 2024 - 25, SOLUTIONS 6

Exercise 1. À faire vous-même.

Exercise 2. (1) Pour l’ordre 180 :

— Factorisation de 180 :
180 = 22 · 32 · 5.

— Par le théorème de classification des groupes abéliens finis engendrés, tout groupe
abélien G d’ordre 180 se décompose en une somme directe de groupes cycliques
correspondant à ces puissances de nombres premiers.

— Pour la partie 2 (ordre 22 = 4), les groupes possibles sont Z4 ou Z2 × Z2.

— Pour la partie 3 (ordre 32 = 9), les groupes possibles sont Z9 ou Z3 × Z3.

— Pour la partie 5 (ordre 5), la seule option est Z5.

— Ainsi, les classifications possibles pour G sont :

G ∼= Z4 × Z9 × Z5, Z2 × Z2 × Z9 × Z5,

Z2 × Z2 × Z3 × Z3 × Z5 et G ∼= Z2 × Z2 × Z9 × Z5.

(2) Pour l’ordre 72 :

— Factorisation de 72 :
72 = 23 · 32.

— Les structures possibles pour la partie 2 (ordre 23 = 8) sont :

— Z8

— Z4 × Z2

— Z2 × Z2 × Z2

— Les structures possibles pour la partie 3 (ordre 32 = 9) sont :

— Z9

— Z3 × Z3

— En combinant ces éléments, les classifications possibles pour G sont :

G ∼= Z8 × Z9, Z8 × Z3 × Z3, Z4 × Z2 × Z9,

Z4 × Z2 × Z3 × Z3, Z2 × Z2 × Z2 × Z9, et Z2 × Z2 × Z2 × Z3 × Z3.

(3) Pour l’ordre 200 :

— Factorisation de 200 :
200 = 23 · 52.

— Les structures possibles pour la partie 2 (ordre 23 = 8) sont :

— Z8
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— Z4 × Z2

— Z2 × Z2 × Z2

— Les structures possibles pour la partie 5 (ordre 52 = 25) sont :

— Z25

— Z5 × Z5

— En combinant ces éléments, les classifications possibles pour G sont :

G ∼= Z8 × Z25, Z8 × Z5 × Z5, Z4 × Z2 × Z25,

Z4 × Z2 × Z5 × Z5, Z2 × Z2 × Z2 × Z25, et Z2 × Z2 × Z2 × Z5 × Z5.

Exercise 3. (1) Nous avons 100 = 22 ·52. Si A n’a pas d’élément d’ordre 4, alors A ne peut
pas avoir de sous-groupe isomorphe à Z/4Z, donc ce dernier ne peut pas apparâıtre dans
la décomposition de A donnée par le théorème de classification des groupes abéliens finis.
Ainsi, A doit être isomorphe à l’un des groupes suivants :

Z/2Z× Z/2Z× Z/25Z ou Z/2Z× Z/2Z× Z/5Z× Z/5Z
En particulier, A possède un sous-groupe isomorphe à Z/2Z× Z/2Z.

(2) Par le théorème de classification des groupes abéliens finis, les groupes abéliens d’ordre
p5 sont, à isomorphisme près, les suivants :

Z/p5Z, Z/pZ× Z/p4Z, Z/pZ× Z/pZ× Z/p3Z

Z/pZ× Z/pZ× Z/pZ× Z/p2Z, Z/pZ× Z/pZ× Z/pZ× Z/pZ× Z/pZ
Z/pZ× Z/p2Z× Z/p2Z, Z/p2Z× Z/p3Z

Ainsi, il existe exactement 7 de ces groupes. Chacun d’entre eux correspond à une
partition de l’entier 5, c’est-à-dire le nombre de manières différentes d’écrire n comme
une somme d’entiers positifs. Par le même théorème, nous pouvons vérifier que le nombre
de groupes abéliens d’ordre pn correspond au nombre de partitions de l’entier n.

Exercise 4. (1) Remarquons que comme chaque Tors(Aα) est un sous-groupe de Aα, nous
avons que ⊕

α∈I
Tors(Aα)

est un sous-groupe de
⊕
α∈I

Aα et par définition, il en est de même pour

Tors(
⊕
α∈I

Aα).

Nous allons montrer qu’ils sont les mêmes ensembles. Soit (aα)α∈I ∈ Tors(
⊕

α∈I Aα). Il
existe donc un entier n > 0 tel que n(aα)α∈I = 0. Ainsi, pour tout α ∈ I, nous obtenons
que naα = 0 et par conséquent aα ∈ Tors(Aα). Par suite, (aα)α∈I ∈

⊕
α∈I

Tors(Aα) et

Tors(
⊕
α∈I

Aα) ⊆
⊕
α∈I

Tors(Aα).
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Réciproquement, si

(aα)α∈I ∈
⊕
α∈I

Tors(Aα),

alors pour chaque α ∈ I, soit nα le plus petit entier strictement positif tel que nαaα = 0.
Comme tous les aα sauf un nombre fini sont égaux à 0, il en résulte que tous les nα sauf un
nombre fini valent 1, et nous pouvons donc définir n = Παnα. Puisque n((aα)α∈I) = 0,
nous obtenons que (aα)α∈I ∈ Tors(

⊕
α∈I Aα).

(2) La démonstration de la première inclusion pour les sommes directes reste valable dans
le cas des produits directs.

Soit A =
∏
n>1

Z/nZ. Alors (1, 1, 1, ...) ∈
∏
n>1

Tors(Z/nZ) mais on vérifie que

(1, 1, 1, ...) /∈ Tors(
∏
n>1

Z/nZ).

Exercise 5. Définissons l’homomorphisme ϕ : Z → Z/pa11 Z× Z/pa22 Z× · · · × Z/pakk Z par

ϕ(x) =
(
x mod pa11 , x mod pa22 , . . . , x mod pakk

)
,

qui associe à chaque entier x ses classes d’équivalence modulo pa11 , pa22 , . . . , pakk . D’après le premier
théorème d’isomorphisme,

Z/ ker(ϕ) ∼= im(ϕ).

Le noyau est constitué de tous les entiers x tels que

ϕ(x) = (0, 0, . . . , 0).

Cela signifie que x ≡ 0 (mod paii ) pour chaque i = 1, 2, . . . , k. Par conséquent, x doit être un
multiple de d = pa11 pa22 . . . pakk , car c’est le plus petit entier divisible par chacun des paii . Ainsi,
ker(ϕ) = dZ.

Pour montrer que ϕ est surjective, considérons un élément arbitraire (y1, y2, . . . , yk) dans

Z/pa11 Z× Z/pa22 Z× · · · × Z/pakk Z.
Nous devons trouver un entier x ∈ Z tel que

x ≡ yi (mod paii ) pour chaque i = 1, 2, . . . , k.

Pour chaque i, définissons

p′i =
d

paii
= pa11 . . . p

ai−1

i−1 p
ai+1

i+1 . . . pakk ,

qui est premier avec paii . Par le lemme de Bézout, il existe un entier bi tel que

(1) p′ibi ≡ 1 (mod paii ).

Définissons alors
x = y1p

′
1b1 + y2p

′
2b2 + · · ·+ ykp

′
kbk.

Cet élément x vérifie ϕ(x) = (y1, . . . , yk) en utilisant (1) et le fait que p′i = 0 (mod p
aj
j ) pour

tous i ̸= j.
Ainsi, ϕ est surjectif, ce qui conclut la démonstration.
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Exercise 6. (1) Considérons le groupe Z/3Z. Clairement, puisque 3x = 0 pour tout x ∈
Z/3Z, ce groupe n’est pas 3-divisible. Cependant, comme 2 · 1 = 2 et 2 · 2 = 1, on voit
qu’il est 2-divisible.

(2) Nous donnons deux exemples :

— Le produit Q× Z/3Z est clairement infini, 2-divisible, mais pas 3-divisible.

— Considérons le groupe (additif) Z2 := { a
2i
|a, i ∈ Z, 2 ∤ a}

⋂
{0} ⊆ Q. Premièrement,

prouvons que c’est bien un (sous)groupe (de Q). Par définition, il contient claire-
ment l’élément neutre et tous les inverses de ses éléments. Vérifions qu’il est stable
par addition : pour i < j :

a

2i
+

b

2j
=

a2j−i + b

2j
∈ Z2

car a2j−i + b est impair. Si i = j et a = −b, alors

a

2i
+

b

2j
= 0 ∈ Z2

Si i = j et a ̸= −b, écrivons a+ b = c2k avec 2 ∤ c et k ≥ 1. On a alors

a

2i
+

b

2j
=

a+ b

2j
=

c

2i−k
∈ Z2

donc ce dernier est bien un groupe.
Observons que Z2 n’est pas 3-divisible car 1

3 ̸∈ Z2 et donc il n’y a pas d’élément
x ∈ Z2 tel que 3x = 1 ∈ Z2. La 2-divisibilité est évidente.

(3) (Q,+) est un tel exemple.

(4) Nous donnons deux preuves :

— Soit n = |G| le cardinal de G et soit g ∈ G. Puisque g est n-divisible, il existe
g0 ∈ G tel que g = ng0. Mais pour tout élément, on a ng0 = 0 (puisque l’ordre
o(g0) divise n, ng0 = ko(g0)g0 = 0 pour un certain k ∈ N).

— Supposons par contradiction que G est fini, divisible, non-trivial et soit 0 ̸= g ∈ G.
Notons n := |G| = pn1

1 . . . pnm
m avec p1, . . . , pm des nombres premiers distincts et tous

ni ≥ 1. En appliquant inductivement la pi-divisibilité, il existe g1 tel que pn1
1 g1 = g

et gi pour i = 2, . . . ,m tel que pni
i gi = gi−1. En particulier, on a 0 = ngm = g ̸= 0,

ce qui est absurde.

Exercise 7. Nous devons trouver des groupes abéliens de type fini G à isomorphisme près qui
s’insèrent dans la suite exacte

0 → Z i−→ G
f−→ Z/12Z → 0.

Nous affirmons que de tels G sont donnés à isomorphisme près par Z×Z/dZ pour d | 12. Comme
G est de type fini, il est isomorphe à F × T où F est un groupe libre isomorphe à Zl pour un
certain l ≥ 0 et T est un groupe de torsion.

Notez que Ker f = Im i ∼= Z et n’a donc pas de torsion. Ainsi, nous obtenons que f|T est
injectif. Par conséquent, T est isomorphe à un sous-groupe de Z/12Z. Donc

T ∼= Z/dZ.
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où d | 12.
Si nous restreignons la suite exacte à F × {0}, nous obtenons que F surjecte sur un groupe

abélien fini et a un noyau isomorphe à Z. Nous laissons le lecteur se convaincre que cela implique
que le rang du groupe abélien libre F est 1. Ainsi, nous obtenons que G ∼= Z × Z/dZ pour un
certain d | 12.

Il reste à montrer que pour chaque d | 12 il existe une suite exacte de la forme

0 → Z i−→ Z× Z/dZ f−→ Z/12Z → 0.

Pour cela, soit d′ = 12
d et soit f : Z × Z/dZ → Z/12Z, (a, b) 7→ a + d′b + 12Z. Notez que f

est une surjection et que son noyau n’a pas d’éléments de torsion non triviaux. Comme Ker f
n’a pas de torsion et Ker f ⊆ Z × Z/dZ, il découle du théorème de classification des groupes
abéliens de type fini que Ker f ∼= Z. Ainsi, nous obtenons une suite exacte comme ci-dessus.

Exercise 8. (1) Soit x ∈ G tel que x ̸= e. Par le théorème de Lagrange, l’ordre de x divise
l’ordre de G, donc l’ordre de x est pk pour un certain 1 ≤ k ≤ n. On peut alors vérifier

que xp
k−1

est un élément d’ordre p.

(2) Procédons par récurrence sur k. Pour k = 0, {e} est un sous-groupe normal d’ordre
p0 = 1 de G. Si k = n, G lui-même est un sous-groupe normal d’ordre pn. Supposons que
0 < k < n et qu’il existe un sous-groupe normal N de G d’ordre pk−1. Alors G/N est un
p-groupe non trivial. Par l’exercice 2 de la feuille 4 (la même démonstration fonctionne)
et Lagrange, Z(G/N) ̸= 0 et contient donc un élément xN d’ordre p. Considérons
l’homomorphisme quotient π : G → G/N et prouvons que π−1(⟨xN⟩) est un sous-
groupe normal d’ordre pk de G. Ces faits découlent des observations suivantes : comme
⟨xN⟩ < Z(G/N), ⟨xN⟩ est un sous-groupe normal de G/N et donc l’image réciproque
par π est un sous-groupe normal de G. De plus, par le premier théorème d’isomorphisme,
nous trouvons que |π−1(⟨xN⟩)| = |⟨xN⟩| · |Ker(π)| = pk.

(3) Nous construisons la châıne souhaitée par récurrence, où Gk < Gk−1 est normal pour
tout 1 ≤ k ≤ n et |Gk| = pn−k pour tout 0 ≤ k ≤ n. Soit G0 = G et k > 0. Par
récurrence, nous avons Gk−1 d’ordre pn−k+1. Par (ii), il existe un sous-groupe normal
Gk < Gk−1 d’ordre pn−k. De plus, pour tout k, l’ordre de Gk/Gk−1 est égal à p, donc
tous les quotients sont cycliques, donc abéliens.


