GROUP THEORY 2024 - 25, SOLUTION SHEET 6

Exercise 1. To do yourself. Ask the assistant if something is unclear.

Exercise 2. (1) For order 180:

e Factor 180:

180 =22.3%.5.

e By the classification theorem for finitely generated abelian groups, any abelian
group G of order 180 decomposes as a direct sum of cyclic groups corresponding to
these prime powers.

— For the 2-part (order 22 = 4), the possible cyclic groups are Z4 or Zs x Zs.
— Possible structures for the 3-part (order 3% = 9) are:
* Zg
* Zg X Zg
— For the 5-part (order 5), the only option is Zs.
e Therefore, the possible classifications for G are:

GgZ4X29XZ5 s G§Z2XZQXZQXZ5
GgZ4XZ:§XZ3XZ5 s GgZQXZQXZ3XZ3XZ5

(2) For order 72:
e Factor 72:
72 =2%.32%
e Possible structures for the 2-part (order 22 = 8) are:
— Zs
- Z4 X ZQ
- ZQ X ZQ X Z2
e Possible structures for the 3-part (order 32 = 9) are:
— 7o
— Zg X Zg
e By combining these, the possible classifications for G are:
GgZSXZQ, ZgXZgXZg, Z4XZ2XZQ7
Z4XZQ><ZgXZg, ZQXZQXZQXZQ, and ZQXZQXZQXZgXZg.

(3) For order 200:
e Factor 200:

200 = 2% . 5°.
e Possible structures for the 2-part (order 23 = 8) are:
— Zs
— Z4 X ZQ

—ZQXZQXZQ
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e Possible structures for the 5-part (order 52 = 25) are:
— Zos
- Z5 X Z5
e By combining these, the possible classifications for GG are:

G§Z§g ><Zg5, Zg ><Z5 ><Z57 Z4XZQ XZQ5,
Z4XZQ><Z5XZ5, ZQXZQXZQXZQ5, and ZQXZQXZQXZ5XZ5.

Exercise 3. Classification of finite abelian groups

(1) We have 100 = 2% - 52. If A has no element of order 4, then A cannot have a subgroup
that is isomorphic to Z/4Z, so the latter cannot appear in the decomposition of A given
by the classification theorem of finite abelian groups. Thus, A must be isomorphic to
one of the following groups:

7.)27. x T.)27 x 7257 or 7./27. x 7.)2Z % Z/5Z x Z/5Z

In particular, A has a subgroup isomorphic to Z/27Z x 7. /27.
(2) By the classification theorem of finite ableian groups, the abelian groups of order p° are,
up to isomorphism, the following:

Z/p°Z, Z/pZ x Z/p*Z, Z/pZ x ZJpZ x Z/p°Z
Z/pZ x L)pZ x L)pZ x L]p*Z., Z)pZ x L]pZ x L]pZ x L/pZ x ZL]pZ
Z/pZ x L)p°Z x L]p*Z, T/p*Z x 7/p°Z
Thus, there are exactly 7 such groups. Each one of these corresponds to a partition of
the integer 5, i.e. the number of different ways to write n as a sum of positive integers.

By the same theorem, we can check that the number of abelian groups of order p"
corresponds to the number of partitions of the integer n.

Exercise 4. (1) Note that since each Tors(A,) is a subgroup of A,, we have that € Tors(A,)
acl
is a subgroup of @ A, and by definition so is Tors(D,c; Aa). We show that they are the
ael
same set. Let (aq)aer € Tors(P,c; Aa). So there exists n > 0 such that n(aq)aecr = 0.

Therefore for all a € I we obtain that na, = 0 and consequently a, € Tors(A,). Hence
(aa)acr € @ Tors(An) and Tors(P,c; Aa) © P Tors(Aqa).
acl ael

Conversely if (aq)acr € @ Tors(A,), then for each € I let n, be the minimum
a€el
positive integer such that n,a, = 0. Since all but finitely many a,, are 0, all but finitely

many n, = 1 and so we can define n = II,n,. Since n((aq)acr) = 0, we obtain that
(aa)aecr € Tors(P,cr Aa)-

(2) The proof of the first inclusion for direct sums goes through in the case of direct products.

Let A= ][] Z/nZ. Then (1,1,1,...) € [] Tors(Z/nZ) but one checks that (1,1,1...) ¢
n>1 n>1
Tors( [[ Z/nZ).

n>1
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Exercise 5. Define the homomorphism ¢ : Z — Z/p{*Z X Z/PS*Z % - - - X Z/pi*Z by

o(x) = (a; mod p{*, z mod p3?, ...,z mod pzk) ,
which maps each integer = to its equivalence classes modulo p{*,p5?,...,p;*. By the First
Isomorphism Theorem
Z/ ker(6) = im(9).
The kernel consists of all integers x such that
o(z) = (0,0,...,0).
This means that = 0 (mod p{*) for each i = 1,2,..., k. Therefore, z must be a multiple of
d = pi'py?...p*, as this is the smallest integer divisible by each p{*. Thus, ker(¢) = dZ.
To show that ¢ is surjective, consider an arbitrary element (y1,¥2,...,yx) in

Z|pV L X L)pYPL X -+ - X TPy L.
We need to find an integer = € Z such that
z=vy; (modp]’) foreachi=1,2,... k.

For each i, define

[ — 01 aj—1, Gi41 ak
p; = Iz =Py ---Pi—1Piy1 Py >
T

which is coprime to p}’. By Bezout’s Lemma, there exists an integer b; such that
(1) pibi =1 (mod pi).
Now define
& = y1pi b+ yapsba + -+ + ypbi.
This element x satisfies ¢(x) = (y1,...,yx) using (1) and the fact that p, =0 (mod p?j) for all
14 ].

Therefore, ¢ is surjective which concludes the proof.

Exercise 6. Divisible abelian groups

(1) (Q,+) is such an example.

(2) Consider the group Z/37Z. Clearly, as 3z = 0 for all x € Z/3Z, this group is not
3-divisible. However, as 2-1=2,2-2 =1, we can see that it is 2-divisible.

(3) We give two examples:

e The product Q x Z/3Z is clearly infinite, 2-divisible, but not 3-divisible.

e Consider the (additive) group Zz := {5;|a,i € Z,2 { a} ({0} C Q. Firstly, let us
prove that this is indeed a (sub)group (of Q). By definition, it clearly contains the
neutral element and all inverses of its elements. Let us verify that it is stable by
addition: for i < j:

a b a2+ b

SR 5, -

because a2/~ 4+ b is odd. If i = j and a = —b, then

a b
§+§:0€ZQ
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If i = j and a # —b, write a + b = c2* with 24 c and k& > 1. We then have
a b at+b ¢

TR TR T
so the latter is indeed a group.
Observe that Zs is not 3-divisible because % ¢ Zs and thus there is no element
x € Zs such that 3x = 1 € Zs. 2-divisibility is straightforward.
(4) We give two proofs:

e Let n = |G| be the cardinal of G and let g € G. Since g is n-divisible there exists
go € G such that g = ngg. But for every element we have that ngy = 0 (since the
order o(go) divides n, ngo = ko(go)go = 0 for some k € N).

e Suppose by contradiction that G is finite, divisible, non-trivial and let 0 # g € G.
Denote n := |G| = p* ...plm with pq,. .., py, distinct primes and all n; > 1. By
inductively applying p;-divisibility, there exists g; such that pj*g; = g and g; for
i =2,...,msuch that p;"g; = g;—1. In particular, we have 0 = ng,, = g # 0, which
is absurd.

€ Zs

Exercise 7. We need to find finitely generated abelian groups G upto isomorphism which fit
into the exact sequence:

05256t 212z 0.

We claim that such G are given up to isomorphism by Z x Z/dZ for d | 12. Since G is finitely
generated, it is isomorphic to F x T where F is a free group isomorphic to Z! for some [ > 0
and T is a torsion group.

Note that Ker f = Im4 = Z and therefore has no torsion. So we obtain that f|, is injective.
Hence T is isomorphic to a subgroup of Z/127Z. Therefore

T>=7/dZ.
where d | 12.

If we restrict the short exact exact sequence to the free group F' x {0}, we obtain that F'
surjects onto a finite abelian group and has a kernel isomorphic to Z. We let the reader con-
vince themselves that this implies that the rank of the free Abelian group F' is 1. Hence we
obtain that G = Z x Z/dZ for some d | 12.

It remains to show that for each d | 12 there is an exact sequence of the form
025 Zxz/dz L 2122 — 0.

To this end let & = 12 and let f : Z x Z/dZ — Z/12Z, (a,b) — a + d'b+ 12Z. Note that f
is a surjection and it’s kernel has no non-trivial torsion elements. Since Ker f has no torsion
and Ker f C Z x Z/dZ, it follows from the classification theorem of finitely generated Abelian
groups that Ker f = Z. Hence we obtain an exact sequence as above. U
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Exercise 8. (1) Let = € G such that = # e. By Lagrange, the order of = divides the order

(2)

of G, so the order of the former is p* for some 1 < k < n. Then we can check that 2P

is an element of order p.

Let us proceed by induction on k. For k = 0, {e} is a normal subgroup of order p" = 1
of G. If k = n, GG itself is a normal subgroup of order p™. Suppose 0 < k < n and
that there exists a normal subgroup N of G of order p*~!. Then G/N is a nontrivial
p-group. By exercise 2 of sheet 4 (the same proof works) and Lagrange, Z(G/N) # 0
and thus contains an element zN of order p. Consider the quotient homomorphism
7 : G — G/N and let us prove that 7~1((xN)) is a normal subgroup of order p* of
G. These follow from the following observations: as (tN) < Z(G/N), (xN) is a normal
subgroup of G/N and thus the preimage by 7 is a normal subgroup of G. Moreover, by
the first isomorphism theorem, we find |7~1((zN))| = [(zN)| - |Ker(r)| = p*.

We construct the desired chain by induction, where Gy < Gj_1 is normal for all 1 <
k <nand |Gg| =p" % forall 0 < k < n. Let Go = G and k > 0. By induction, we
bave G},_1 of order p"~*+1. By (ii) there exists a normal subgroup Gy < G}_1 of order
p"~*. Moreover, for all k the order of Gi/G}_1 is equal to p, so all the quotients are
cyclic, thus abelian, CQFD.



