
GROUP THEORY 2024 - 25, SOLUTION SHEET 6

Exercise 1. To do yourself. Ask the assistant if something is unclear.

Exercise 2. (1) For order 180:
• Factor 180:

180 = 22 · 32 · 5.
• By the classification theorem for finitely generated abelian groups, any abelian
group G of order 180 decomposes as a direct sum of cyclic groups corresponding to
these prime powers.

– For the 2-part (order 22 = 4), the possible cyclic groups are Z4 or Z2 × Z2.
– Possible structures for the 3-part (order 32 = 9) are:

∗ Z9

∗ Z3 × Z3

– For the 5-part (order 5), the only option is Z5.
• Therefore, the possible classifications for G are:

G ∼= Z4 × Z9 × Z5 , G ∼= Z2 × Z2 × Z9 × Z5

G ∼= Z4 × Z3 × Z3 × Z5 , G ∼= Z2 × Z2 × Z3 × Z3 × Z5

(2) For order 72:
• Factor 72:

72 = 23 · 32.
• Possible structures for the 2-part (order 23 = 8) are:

– Z8

– Z4 × Z2

– Z2 × Z2 × Z2

• Possible structures for the 3-part (order 32 = 9) are:
– Z9

– Z3 × Z3

• By combining these, the possible classifications for G are:

G ∼= Z8 × Z9, Z8 × Z3 × Z3, Z4 × Z2 × Z9,

Z4 × Z2 × Z3 × Z3, Z2 × Z2 × Z2 × Z9, and Z2 × Z2 × Z2 × Z3 × Z3.

(3) For order 200:
• Factor 200:

200 = 23 · 52.
• Possible structures for the 2-part (order 23 = 8) are:

– Z8

– Z4 × Z2

– Z2 × Z2 × Z2
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• Possible structures for the 5-part (order 52 = 25) are:
– Z25

– Z5 × Z5

• By combining these, the possible classifications for G are:

G ∼= Z8 × Z25, Z8 × Z5 × Z5, Z4 × Z2 × Z25,

Z4 × Z2 × Z5 × Z5, Z2 × Z2 × Z2 × Z25, and Z2 × Z2 × Z2 × Z5 × Z5.

Exercise 3. Classification of finite abelian groups

(1) We have 100 = 22 · 52. If A has no element of order 4, then A cannot have a subgroup
that is isomorphic to Z/4Z, so the latter cannot appear in the decomposition of A given
by the classification theorem of finite abelian groups. Thus, A must be isomorphic to
one of the following groups:

Z/2Z× Z/2Z× Z/25Z or Z/2Z× Z/2Z× Z/5Z× Z/5Z
In particular, A has a subgroup isomorphic to Z/2Z× Z/2Z.

(2) By the classification theorem of finite ableian groups, the abelian groups of order p5 are,
up to isomorphism, the following:

Z/p5Z, Z/pZ× Z/p4Z, Z/pZ× Z/pZ× Z/p3Z
Z/pZ× Z/pZ× Z/pZ× Z/p2Z, Z/pZ× Z/pZ× Z/pZ× Z/pZ× Z/pZ

Z/pZ× Z/p2Z× Z/p2Z, Z/p2Z× Z/p3Z
Thus, there are exactly 7 such groups. Each one of these corresponds to a partition of
the integer 5, i.e. the number of different ways to write n as a sum of positive integers.
By the same theorem, we can check that the number of abelian groups of order pn

corresponds to the number of partitions of the integer n.

Exercise 4. (1) Note that since each Tors(Aα) is a subgroup ofAα, we have that
⊕
α∈I

Tors(Aα)

is a subgroup of
⊕
α∈I

Aα and by definition so is Tors(
⊕

α∈I Aα). We show that they are the

same set. Let (aα)α∈I ∈ Tors(
⊕

α∈I Aα). So there exists n > 0 such that n(aα)α∈I = 0.
Therefore for all α ∈ I we obtain that naα = 0 and consequently aα ∈ Tors(Aα). Hence
(aα)α∈I ∈

⊕
α∈I

Tors(Aα) and Tors(
⊕

α∈I Aα) ⊆
⊕
α∈I

Tors(Aα).

Conversely if (aα)α∈I ∈
⊕
α∈I

Tors(Aα), then for each α ∈ I let nα be the minimum

positive integer such that nαaα = 0. Since all but finitely many aα are 0, all but finitely
many nα = 1 and so we can define n = Παnα. Since n((aα)α∈I) = 0, we obtain that
(aα)α∈I ∈ Tors(

⊕
α∈I Aα).

(2) The proof of the first inclusion for direct sums goes through in the case of direct products.

Let A =
∏
n>1

Z/nZ. Then (1, 1, 1, ...) ∈
∏
n>1

Tors(Z/nZ) but one checks that (1, 1, 1...) /∈

Tors(
∏
n>1

Z/nZ).
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Exercise 5. Define the homomorphism ϕ : Z → Z/pa11 Z× Z/pa22 Z× · · · × Z/pakk Z by

ϕ(x) =
(
x mod pa11 , x mod pa22 , . . . , x mod pakk

)
,

which maps each integer x to its equivalence classes modulo pa11 , pa22 , . . . , pakk . By the First
Isomorphism Theorem

Z/ ker(ϕ) ∼= im(ϕ).

The kernel consists of all integers x such that

ϕ(x) = (0, 0, . . . , 0).

This means that x ≡ 0 (mod paii ) for each i = 1, 2, . . . , k. Therefore, x must be a multiple of
d = pa11 pa22 . . . pakk , as this is the smallest integer divisible by each paii . Thus, ker(ϕ) = dZ.

To show that ϕ is surjective, consider an arbitrary element (y1, y2, . . . , yk) in

Z/pa11 Z× Z/pa22 Z× · · · × Z/pakk Z.
We need to find an integer x ∈ Z such that

x ≡ yi (mod paii ) for each i = 1, 2, . . . , k.

For each i, define

p′i =
d

paii
= pa11 . . . p

ai−1

i−1 p
ai+1

i+1 . . . pakk ,

which is coprime to paii . By Bezout’s Lemma, there exists an integer bi such that

(1) p′ibi ≡ 1 (mod paii ).

Now define
x = y1p

′
1b1 + y2p

′
2b2 + · · ·+ ykp

′
kbk.

This element x satisfies ϕ(x) = (y1, . . . , yk) using (1) and the fact that p′i = 0 (mod p
aj
j ) for all

i ̸= j.
Therefore, ϕ is surjective which concludes the proof.

Exercise 6. Divisible abelian groups

(1) (Q,+) is such an example.
(2) Consider the group Z/3Z. Clearly, as 3x = 0 for all x ∈ Z/3Z, this group is not

3-divisible. However, as 2 · 1 = 2, 2 · 2 = 1, we can see that it is 2-divisible.
(3) We give two examples:

• The product Q× Z/3Z is clearly infinite, 2-divisible, but not 3-divisible.
• Consider the (additive) group Z2 := { a

2i
|a, i ∈ Z, 2 ∤ a}

⋂
{0} ⊆ Q. Firstly, let us

prove that this is indeed a (sub)group (of Q). By definition, it clearly contains the
neutral element and all inverses of its elements. Let us verify that it is stable by
addition: for i < j:

a

2i
+

b

2j
=

a2j−i + b

2j
∈ Z2

because a2j−i + b is odd. If i = j and a = −b, then

a

2i
+

b

2j
= 0 ∈ Z2
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If i = j and a ̸= −b, write a+ b = c2k with 2 ∤ c and k ≥ 1. We then have

a

2i
+

b

2j
=

a+ b

2j
=

c

2i−k
∈ Z2

so the latter is indeed a group.
Observe that Z2 is not 3-divisible because 1

3 ̸∈ Z2 and thus there is no element
x ∈ Z2 such that 3x = 1 ∈ Z2. 2-divisibility is straightforward.

(4) We give two proofs:
• Let n = |G| be the cardinal of G and let g ∈ G. Since g is n-divisible there exists
g0 ∈ G such that g = ng0. But for every element we have that ng0 = 0 (since the
order o(g0) divides n, ng0 = ko(g0)g0 = 0 for some k ∈ N).

• Suppose by contradiction that G is finite, divisible, non-trivial and let 0 ̸= g ∈ G.
Denote n := |G| = pn1

1 . . . pnm
m with p1, . . . , pm distinct primes and all ni ≥ 1. By

inductively applying pi-divisibility, there exists g1 such that pn1
1 g1 = g and gi for

i = 2, . . . ,m such that pni
i gi = gi−1. In particular, we have 0 = ngm = g ̸= 0, which

is absurd.

Exercise 7. We need to find finitely generated abelian groups G upto isomorphism which fit
into the exact sequence:

0 → Z i−→ G
f−→ Z/12Z → 0.

We claim that such G are given up to isomorphism by Z× Z/dZ for d | 12. Since G is finitely
generated, it is isomorphic to F × T where F is a free group isomorphic to Zl for some l ≥ 0
and T is a torsion group.

Note that Ker f = Im i ∼= Z and therefore has no torsion. So we obtain that f|T is injective.
Hence T is isomorphic to a subgroup of Z/12Z. Therefore

T ∼= Z/dZ.
where d | 12.

If we restrict the short exact exact sequence to the free group F × {0}, we obtain that F
surjects onto a finite abelian group and has a kernel isomorphic to Z. We let the reader con-
vince themselves that this implies that the rank of the free Abelian group F is 1. Hence we
obtain that G ∼= Z× Z/dZ for some d | 12.

It remains to show that for each d | 12 there is an exact sequence of the form

0 → Z i−→ Z× Z/dZ f−→ Z/12Z → 0.

To this end let d′ = 12
d and let f : Z × Z/dZ → Z/12Z, (a, b) 7→ a + d′b + 12Z. Note that f

is a surjection and it’s kernel has no non-trivial torsion elements. Since Ker f has no torsion
and Ker f ⊆ Z × Z/dZ, it follows from the classification theorem of finitely generated Abelian
groups that Ker f ∼= Z. Hence we obtain an exact sequence as above. □
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Exercise 8. (1) Let x ∈ G such that x ̸= e. By Lagrange, the order of x divides the order

of G, so the order of the former is pk for some 1 ≤ k ≤ n. Then we can check that xp
k−1

is an element of order p.
(2) Let us proceed by induction on k. For k = 0, {e} is a normal subgroup of order p0 = 1

of G. If k = n, G itself is a normal subgroup of order pn. Suppose 0 < k < n and
that there exists a normal subgroup N of G of order pk−1. Then G/N is a nontrivial
p-group. By exercise 2 of sheet 4 (the same proof works) and Lagrange, Z(G/N) ̸= 0
and thus contains an element xN of order p. Consider the quotient homomorphism
π : G → G/N and let us prove that π−1(⟨xN⟩) is a normal subgroup of order pk of
G. These follow from the following observations: as ⟨xN⟩ < Z(G/N), ⟨xN⟩ is a normal
subgroup of G/N and thus the preimage by π is a normal subgroup of G. Moreover, by
the first isomorphism theorem, we find |π−1(⟨xN⟩)| = |⟨xN⟩| · |Ker(π)| = pk.

(3) We construct the desired chain by induction, where Gk < Gk−1 is normal for all 1 ≤
k ≤ n and |GK | = pn−k for all 0 ≤ k ≤ n. Let G0 = G and k > 0. By induction, we
bave Gk−1 of order pn−k+1. By (ii) there exists a normal subgroup Gk < Gk−1 of order
pn−k. Moreover, for all k the order of Gk/Gk−1 is equal to p, so all the quotients are
cyclic, thus abelian, CQFD.


