THEORIE DES GROUPES 2024 - 25, SOLUTIONS 5

Exercise 1. A faire vous-méme.

Exercise 2. (1) Tout élément d’un groupe fini est de torsion, donc Tors(A) = A.
(2) Aucun élément sauf 0 n’est d’ordre fini, donc son groupe de torsion est trivial.
(3) Soit [¢] € Q/Z un élément quelconque représenté par ¢ = § € Q. Alors

blg] = [bg] = [a] = [0] € Q/Z

puisque a € Z. Ainsi, tout élément est de torsion et Tors(Q/Z) = Q/Z.
(4) Soit & € C* et écrivons-le en forme polaire x = re? avec r > 0 et 6 € [0,27). Alors
2" = r"e = 1 gi et seulement si r = 1 et nf = 0 mod 2m, c’est-a-dire x = 2™/ pour

k € Z. Ce sont les racines n-iemes de I'unité u,. Ainsi

Tors(C*) = pioo = U L

n€N>O

(5) Nous savons que les sous-groupes de Z sont de la forme nZ = Z, qui sont libres, donc
sans torsion.

(6) Nous avons vu dans le cours que les sous-groupes d’un groupe abélien libre fini sont
abéliens libres, ce qui montre que leur sous-groupe de torsion est trivial.

Exercise 3. Etant donné que G est de type fini, il existe un ensemble fini de générateurs pour
G. Soit g1, g9, - .., gr un ensemble de générateurs pour G, de sorte que tout élément de G peut
s’écrire comme une combinaison linéaire entiere de ces générateurs :

g =ni1g1 +naga + -+ NkGk,

ou ni,ng,...,ng € 2.

Puisque Tors(G) = G, tout élément de G est un élément de torsion. Cela implique que pour
chaque générateur g; € G, il existe un entier positif m; minimal tel que m; - g; = 0 (m; est
Pordre de g;).

Puisque G est engendré par I'ensemble fini {g1,92,...,9x} et que chaque g; a un ordre fini
m;, il n’y a qu’un nombre fini de combinaisons possibles des générateurs g1, go, . .., gr avec des
coefficients entiers n; modulo m;, ce qui implique que G lui-méme est fini.

Exercise 4. (1) = (2) : Pour tout i € I, définissons e; € Z®' comme :

e; = (aj)jgeZ@I, ola;=1sij=1tietaj=0sij#:i.
11 est facile de montrer en utilisant la définition des sommes directes que I'ensemble {e;};cr est

une base de Z®'. Maintenant, si A = Z®!, alors I"image homomorphe des e; est une base pour
1
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A.
(2) = (1) : Fixons une base (ag)res de A, alors tout élément x € A peut étre écrit de
maniere unique comme

T = anak

kel
pour certains ny € Z. Considérons la fonction suivante, qui est bien définie en raison de 'unicité
mentionnée ci-dessus
. oI
0 A= ZON npag > (nkker
kel
Il est facile de vérifier que ¢ est un isomorphisme de groupes abéliens.

Exercise 5. (1) Supposons d’abord que G est abélien libre. L’exercice précédent nous dit
qu’il existe un ensemble I et une base B = {a; | i € I} C G telle que tous les éléments
x € G peuvent étre écrits de maniere unique sous forme de sommes finies

T = Z nrag
kel
ol presque tous les ny sont égaux a 0. Soit A un autre groupe abélien avec une fonction
d’ensemble f: B — A. Prouvons 'existence de ¢ en définissant

p:G@— A

z = npag >y npflar)

kel kel

Cela est bien défini puisque presque tous les ng sont nuls (c’est une somme finie). C’est
clairement un homomorphisme de groupes (a vérifier par vous-méme) et ¢(i(ay)) =
w(ar) = f(ax) pour tout ar € B de sorte que w oi = f. Pour prouver l'unicité,
supposons qu'il existe deux homomorphismes ¢, ¢’ : G — A prolongeant f. Alors pour
tout x = Zkel niar € G nous avons

¢ (x) = 'O nrar) =D e (a)

kel kel
=> nef(ar)
kel
= " mplar) = (> npar) = o)
kel kel

ce qui prouve que ¢ = ¢’ (nous avons utilisé le fait que ¢ et ¢’ sont linéaires et prolon-
gent f).

(2) Supposons maintenant que G satisfait a la propriété universelle des groupes abéliens
libres. Nous allons montrer que G est en effet libre abélien en montrant que G = Z®5
pour B l’ensemble donné par la propriété universelle de GG. Notez que l'idée de la
preuve suivante est toujours utilisée lors du traitement des propriétés universelles, que
vous rencontrerez (probablement) a nouveau dans le futur.
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Soit f : B — Z%B donné par l'inclusion de la base, c’est-a-dire f : b — e, € ZB
défini dans la preuve de l'exercice précédent (e, est une généralisation de e; € k™ en
algebre linéaire). En utilisant la propriété universelle de G, 'application f se prolonge
en un morphisme ¢ : G — Z&8 de telle sorte que le triangle suivant commute

B .@

Nk

798,

Puisque Z®B est libre abélien avec comme base f : B C Z®B il satisfait & la propriété
universelle (prouvée dans le premier point) des groupes abéliens libres. Ainsi, nous
pouvons prolonger i : B — G le long de f : B — Z®B pour obtenir ¢’ : Z%8 — G de
sorte que le triangle suivant commute:

B!, zoB

RS

Nous allons maintenant prouver que ¢ et ¢’ sont inverses I'une de I’autre en appliquant
deux fois de plus la propriété universelle des groupes abéliens libres. D’abord, nous
I’appliquons a G et elle nous dit qu’il existe un unique ¥ : G — G tel que le triangle
suivant commute

B—5 @
Xfﬁ

Pulsque I'identité idg : G — G fait Daffaire, toute telle ¢ doit étre l’identité. Mais pour
) = ¢’ o nous avons que Yoi = Y opoi = ¢ o f = i, ol nous utilisons la commutativité
des deux premiers triangles Comme expliqué, par unicité de telles applications, nous
devons avoir que ¢’ o ¢ = idg. De maniere similaire, nous pouvons utiliser la propriété
universelle de Z®5 pour montrer que p o ¢’ = idges. Cela montre que G = Z%B | ce qui
termine la preuve.

Exercise 6. Puisque F est libre avec comme base {ej, €2, €3}, nous pouvons appliquer la pro-
priété universelle de I’exercice 5 avec B = {ey,ea,e3}, G = F et A = Z2. Cela nous dit qu’il
existe un unique homomorphisme de groupes ¢ : F — Z? qui prolonge f. L’image d’un ho-
momorphisme de groupes est toujours un sous-groupe du codomaine. Puisque nous avons vu
dans les cours que les sous-groupes des groupes abéliens libres finis sont libres abéliens finis,
cela répond positivement a la question.

Exercise 7. Nous utiliserons constamment le fait que tout sous-groupe de Z* est libre de rang
I < k. Dans chaque cas, nous désignerons le groupe abélien en question par A.

(1) Comme {(1,1)} est un ensemble générateur de A et est linéairement indépendant, c’est

une base pour A et donc le rang de A est 1.
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(2) Le rang de A est encore 1 puisque B = {(1,2)} est une base pour A. L’ensemble B est
linéairement indépendant et génere A car (—3,—6) = (—3) - (1,2).

(3) On vérifie que {1,+/2,/3} forme une base pour A et donc le rang de A est 3.

(4) Lerang de A est 3 puisque les trois éléments géneérent A et sont linéairement indépendants,
ce qui peut étre constaté en observant que le déterminant de la matrice suivante est non
nul

(5) Remarquez que lensemble B = {(1,5,1),(2,3,8)} est linéairement indépendant et
génere A puisque (1,—9,13) = (=3) - (1,5,1) + 2 - (2,3,8). Dongc, le rang de A est
2.

Exercise 8. Soit ¢ : Z" — Z™ un isomorphisme de groupes abéliens. Fixons un nombre
premier p et considérons le sous-groupe suivant de Z™ :

H :={(a1,...,am) € Z™ | a; € pZ}.

Remarquons que Z™/H = (Z/pZ)™.
Nous laissons comme un petit exercice au lecteur de montrer que

o Y (H) ={(ay,...,an) € Z" | a; € pZ}

et Z" /o~ (H) = (Z/pL)".
Puisque ¢ est en particulier un homomorphisme surjectif, le théoréeme de correspondance ainsi
que le troisieme théoreme d’isomorphisme impliquent que ¢ induit un isomorphisme

B2 Y(H) — Z™/H.
Nous avons donc un isomorphisme de groupes abéliens
@ (Z/pZ)" — (Z/pZ)™.

qui est automatiquement Z/pZ-linéaire puisqu’il s’agit d’'un morphisme de groupes abéliens.
Puisque les espaces vectoriels isomorphes doivent avoir la méme dimension, on obtient que
m=n.

Exercise 9. La méme preuve que dans la Proposition 11 des notes de cours s’applique pour
montrer que Q>% n’est pas de type fini. Pour montrer qu'il est libre, nous montrons que
Pensemble B = {p; | p; est un nombre premier} des nombres premiers forme une base. Soit
q = 3 écrit sous forme irréductible, avec a,b € Ni. Décomposons a et b comme un produit
de puissances de nombres premiers. Remarquons que les nombres premiers apparaissant dans
chaque décomposition sont distincts puisque la fraction ¢ a été choisie irréductible. En util-
isant ces décompositions, nous obtenons ¢ comme un produit fini de puissances d’éléments
de B (les puissances sont négatives pour les premiers apparaissant dans la décomposition de
b). S’il existait plus d’'une décomposition de ¢ comme un produit de puissances de nombres
premiers, cela donnerait des décompositions distinctes de a ou de b (ou des deux) comme pro-

duit de puissances de nombres premiers, en séparant les puissances positives et négatives. Par
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unicité de la décomposition des nombres naturels (vue en algebre linéaire 2), nous obtenons une
contradiction.

Nous avons montré que B est une base du groupe abélien Q>Y, ce qui signifie qu’il est libre
par l'exercice 4.

Exercise 10. Nous nous référons au diagramme de la série pour la notation. Supposons que
F' soit un groupe abélien libre de type fini, alors fixons une base ey, es, ..., e, pour F. Puisque
¢ est surjective, nous pouvons choisir des pré-images g1, ..., g, dans G de ¥(e1), ..., (e,)(H).
Il découle de la propriété universelle des groupes abéliens libres que nous pouvons définir une
application o : A — G, rendant le diagramme commutatif en envoyant simplement e; sur g;.
Ainsi, A est projectif.
Réciproquement, supposons que A soit un groupe abélien de type fini, alors soit a1, ...,a, un
ensemble générateur quelconque. Nous obtenons alors un homomorphisme de groupes surjectif
¢ : 7" — A défini en envoyant la base usuelle e; sur a;. Soit K le noyau de ’homomorphisme
¢. Maintenant, K est un groupe abélien libre puisque nous savons, d’apres les cours, que les
sous-groupes des groupes abéliens libres de type fini sont libres. Nous obtenons donc une suite
exacte courte

0= K720 % A0
Soit ¢ : A — A I’application identité, la projectivité de A implique qu’il existe une application
a: A — Z" telle que ¢ o = id4. Ainsi, la suite exacte ci-dessus se scinde a droite. Par
conséquent, A est un sous-groupe de Z" et est donc un groupe abélien libre.

Exercise 11. Considérons la suite exacte courte
0—2Z—7Z— Z/2Z — 0.

La suite induite des sous-groupes de torsion est
0—-0—0—7Z/2Z — 0.

qui n’est clairement pas exacte en raison de I’échec de la surjectivité de I'application 0 — Z/27Z.



