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Exercise 1. À faire vous-même.

Exercise 2. (1) Tout élément d’un groupe fini est de torsion, donc Tors(A) = A.
(2) Aucun élément sauf 0 n’est d’ordre fini, donc son groupe de torsion est trivial.
(3) Soit [q] ∈ Q/Z un élément quelconque représenté par q = a

b ∈ Q. Alors

b[q] = [bq] = [a] = [0] ∈ Q/Z

puisque a ∈ Z. Ainsi, tout élément est de torsion et Tors(Q/Z) = Q/Z.
(4) Soit x ∈ C× et écrivons-le en forme polaire x = reiθ avec r > 0 et θ ∈ [0, 2π). Alors

xn = rneinθ = 1 si et seulement si r = 1 et nθ = 0 mod 2π, c’est-à-dire x = e2πik/n pour
k ∈ Z. Ce sont les racines n-ièmes de l’unité µn. Ainsi

Tors(C×) = µ∞ =
⋃

n∈N>0

µn.

(5) Nous savons que les sous-groupes de Z sont de la forme nZ ∼= Z, qui sont libres, donc
sans torsion.

(6) Nous avons vu dans le cours que les sous-groupes d’un groupe abélien libre fini sont
abéliens libres, ce qui montre que leur sous-groupe de torsion est trivial.

Exercise 3. Étant donné que G est de type fini, il existe un ensemble fini de générateurs pour
G. Soit g1, g2, . . . , gk un ensemble de générateurs pour G, de sorte que tout élément de G peut
s’écrire comme une combinaison linéaire entière de ces générateurs :

g = n1g1 + n2g2 + · · ·+ nkgk,

où n1, n2, . . . , nk ∈ Z.
Puisque Tors(G) = G, tout élément de G est un élément de torsion. Cela implique que pour

chaque générateur gi ∈ G, il existe un entier positif mi minimal tel que mi · gi = 0 (mi est
l’ordre de gi).

Puisque G est engendré par l’ensemble fini {g1, g2, . . . , gk} et que chaque gi a un ordre fini
mi, il n’y a qu’un nombre fini de combinaisons possibles des générateurs g1, g2, . . . , gk avec des
coefficients entiers ni modulo mi, ce qui implique que G lui-même est fini.

Exercise 4. (1) =⇒ (2) : Pour tout i ∈ I, définissons ei ∈ Z⊕I comme :

ei := (aj)j∈I ∈ Z⊕I , où aj = 1 si j = i et aj = 0 si j ̸= i.

Il est facile de montrer en utilisant la définition des sommes directes que l’ensemble {ei}i∈I est
une base de Z⊕I . Maintenant, si A ∼= Z⊕I , alors l’image homomorphe des ei est une base pour
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A.
(2) =⇒ (1) : Fixons une base (ak)k∈I de A, alors tout élément x ∈ A peut être écrit de
manière unique comme

x =
∑
k∈I

nkak

pour certains nk ∈ Z. Considérons la fonction suivante, qui est bien définie en raison de l’unicité
mentionnée ci-dessus

φ : A→ Z⊕I ,
∑
k∈I

nkak 7→ (nk)k∈I .

Il est facile de vérifier que φ est un isomorphisme de groupes abéliens.

Exercise 5. (1) Supposons d’abord que G est abélien libre. L’exercice précédent nous dit
qu’il existe un ensemble I et une base B = {ai | i ∈ I} ⊂ G telle que tous les éléments
x ∈ G peuvent être écrits de manière unique sous forme de sommes finies

x =
∑
k∈I

nkak

où presque tous les nk sont égaux à 0. Soit A un autre groupe abélien avec une fonction
d’ensemble f : B → A. Prouvons l’existence de φ en définissant

φ : G→ A

x =
∑
k∈I

nkak 7→
∑
k∈I

nkf(ak)

Cela est bien défini puisque presque tous les nk sont nuls (c’est une somme finie). C’est
clairement un homomorphisme de groupes (à vérifier par vous-même) et φ(i(ak)) =
φ(ak) = f(ak) pour tout ak ∈ B de sorte que φ ◦ i = f . Pour prouver l’unicité,
supposons qu’il existe deux homomorphismes φ,φ′ : G → A prolongeant f . Alors pour
tout x =

∑
k∈I nkak ∈ G nous avons

φ′(x) = φ′(
∑
k∈I

nkak) =
∑
k∈I

nkφ
′(ak)

=
∑
k∈I

nkf(ak)

=
∑
k∈I

nkφ(ak) = φ(
∑
k∈I

nkak) = φ(x)

ce qui prouve que φ = φ′ (nous avons utilisé le fait que φ et φ′ sont linéaires et prolon-
gent f).

(2) Supposons maintenant que G satisfait à la propriété universelle des groupes abéliens
libres. Nous allons montrer que G est en effet libre abélien en montrant que G ∼= Z⊕B

pour B l’ensemble donné par la propriété universelle de G. Notez que l’idée de la
preuve suivante est toujours utilisée lors du traitement des propriétés universelles, que
vous rencontrerez (probablement) à nouveau dans le futur.
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Soit f : B → Z⊕B donné par l’inclusion de la base, c’est-à-dire f : b 7→ eb ∈ Z⊕B

défini dans la preuve de l’exercice précédent (eb est une généralisation de ei ∈ kn en
algèbre linéaire). En utilisant la propriété universelle de G, l’application f se prolonge
en un morphisme φ : G→ Z⊕B de telle sorte que le triangle suivant commute

B G

Z⊕B.

i

f
φ

Puisque Z⊕B est libre abélien avec comme base f : B ⊂ Z⊕B, il satisfait à la propriété
universelle (prouvée dans le premier point) des groupes abéliens libres. Ainsi, nous
pouvons prolonger i : B → G le long de f : B → Z⊕B pour obtenir φ′ : Z⊕B → G de
sorte que le triangle suivant commute:

B Z⊕B

G.

f

i
φ′

Nous allons maintenant prouver que φ et φ′ sont inverses l’une de l’autre en appliquant
deux fois de plus la propriété universelle des groupes abéliens libres. D’abord, nous
l’appliquons à G et elle nous dit qu’il existe un unique ψ : G → G tel que le triangle
suivant commute

B G

G.

i

i
ψ

Puisque l’identité idG : G→ G fait l’affaire, toute telle ψ doit être l’identité. Mais pour
ψ = φ′◦φ nous avons que ψ◦i = φ′◦φ◦i = φ′◦f = i, où nous utilisons la commutativité
des deux premiers triangles. Comme expliqué, par unicité de telles applications, nous
devons avoir que φ′ ◦ φ = idG. De manière similaire, nous pouvons utiliser la propriété
universelle de Z⊕B pour montrer que φ ◦φ′ = idZ⊕B . Cela montre que G ∼= Z⊕B, ce qui
termine la preuve.

Exercise 6. Puisque F est libre avec comme base {e1, e2, e3}, nous pouvons appliquer la pro-
priété universelle de l’exercice 5 avec B = {e1, e2, e3}, G = F et A = Z2. Cela nous dit qu’il
existe un unique homomorphisme de groupes φ : F → Z2 qui prolonge f . L’image d’un ho-
momorphisme de groupes est toujours un sous-groupe du codomaine. Puisque nous avons vu
dans les cours que les sous-groupes des groupes abéliens libres finis sont libres abéliens finis,
cela répond positivement à la question.

Exercise 7. Nous utiliserons constamment le fait que tout sous-groupe de Zk est libre de rang
l ≤ k. Dans chaque cas, nous désignerons le groupe abélien en question par A.

(1) Comme {(1, 1)} est un ensemble générateur de A et est linéairement indépendant, c’est
une base pour A et donc le rang de A est 1.
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(2) Le rang de A est encore 1 puisque B = {(1, 2)} est une base pour A. L’ensemble B est
linéairement indépendant et génère A car (−3,−6) = (−3) · (1, 2).

(3) On vérifie que {1,
√
2,
√
3} forme une base pour A et donc le rang de A est 3.

(4) Le rang deA est 3 puisque les trois éléments génèrentA et sont linéairement indépendants,
ce qui peut être constaté en observant que le déterminant de la matrice suivante est non
nul 1 2 1

5 3 −9
1 8 34

 .

(5) Remarquez que l’ensemble B = {(1, 5, 1), (2, 3, 8)} est linéairement indépendant et
génère A puisque (1,−9, 13) = (−3) · (1, 5, 1) + 2 · (2, 3, 8). Donc, le rang de A est
2.

Exercise 8. Soit φ : Zn → Zm un isomorphisme de groupes abéliens. Fixons un nombre
premier p et considérons le sous-groupe suivant de Zm :

H := {(a1, ..., am) ∈ Zm | ai ∈ pZ}.

Remarquons que Zm/H ∼= (Z/pZ)m.
Nous laissons comme un petit exercice au lecteur de montrer que

φ−1(H) = {(a1, ..., an) ∈ Zn | ai ∈ pZ}

et Zn/φ−1(H) ∼= (Z/pZ)n.
Puisque φ est en particulier un homomorphisme surjectif, le théorème de correspondance ainsi
que le troisième théorème d’isomorphisme impliquent que φ induit un isomorphisme

φ : Zn/φ−1(H) → Zm/H.

Nous avons donc un isomorphisme de groupes abéliens

φ : (Z/pZ)n → (Z/pZ)m.

qui est automatiquement Z/pZ-linéaire puisqu’il s’agit d’un morphisme de groupes abéliens.
Puisque les espaces vectoriels isomorphes doivent avoir la même dimension, on obtient que
m = n.

Exercise 9. La même preuve que dans la Proposition 11 des notes de cours s’applique pour
montrer que Q>0 n’est pas de type fini. Pour montrer qu’il est libre, nous montrons que
l’ensemble B = {pi | pi est un nombre premier} des nombres premiers forme une base. Soit
q = a

b écrit sous forme irréductible, avec a, b ∈ N∗. Décomposons a et b comme un produit
de puissances de nombres premiers. Remarquons que les nombres premiers apparaissant dans
chaque décomposition sont distincts puisque la fraction a

b a été choisie irréductible. En util-
isant ces décompositions, nous obtenons q comme un produit fini de puissances d’éléments
de B (les puissances sont négatives pour les premiers apparaissant dans la décomposition de
b). S’il existait plus d’une décomposition de q comme un produit de puissances de nombres
premiers, cela donnerait des décompositions distinctes de a ou de b (ou des deux) comme pro-
duit de puissances de nombres premiers, en séparant les puissances positives et négatives. Par
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unicité de la décomposition des nombres naturels (vue en algèbre linéaire 2), nous obtenons une
contradiction.

Nous avons montré que B est une base du groupe abélien Q>0, ce qui signifie qu’il est libre
par l’exercice 4.

Exercise 10. Nous nous référons au diagramme de la série pour la notation. Supposons que
F soit un groupe abélien libre de type fini, alors fixons une base e1, e2, ..., en pour F . Puisque
ϕ est surjective, nous pouvons choisir des pré-images g1, ..., gn dans G de ψ(e1), ..., ψ(en)(H).
Il découle de la propriété universelle des groupes abéliens libres que nous pouvons définir une
application α : A → G, rendant le diagramme commutatif en envoyant simplement ei sur gi.
Ainsi, A est projectif.
Réciproquement, supposons que A soit un groupe abélien de type fini, alors soit a1, ..., an un
ensemble générateur quelconque. Nous obtenons alors un homomorphisme de groupes surjectif
ϕ : Zn → A défini en envoyant la base usuelle ei sur ai. Soit K le noyau de l’homomorphisme
ϕ. Maintenant, K est un groupe abélien libre puisque nous savons, d’après les cours, que les
sous-groupes des groupes abéliens libres de type fini sont libres. Nous obtenons donc une suite
exacte courte

0 −→ K −→ Zn ϕ−→ A→ 0.

Soit ψ : A→ A l’application identité, la projectivité de A implique qu’il existe une application
α : A → Zn telle que ϕ ◦ α = idA. Ainsi, la suite exacte ci-dessus se scinde à droite. Par
conséquent, A est un sous-groupe de Zn et est donc un groupe abélien libre.

Exercise 11. Considérons la suite exacte courte

0 → 2Z → Z → Z/2Z → 0.

La suite induite des sous-groupes de torsion est

0 → 0 → 0 → Z/2Z → 0.

qui n’est clairement pas exacte en raison de l’échec de la surjectivité de l’application 0 → Z/2Z.


