THEORIE DES GROUPES 2024 - 25, SOLUTIONS 4

Exercise 1. Supposons que G ne soit pas cyclique.

(1)

Soit G ~ G P’action par conjugaison, définie par g -« = gxg~'. L’ensemble X = G est
partitionné par ses orbites, qui sont des classes de conjugaison d’éléments. Notez que
x € Z(G) si et seulement si son orbite est triviale puisque gzg~—! = 2 pour tout g € G,
c’est-a-dire

x € Z(G) < Orb(z) = x.

Ainsi, les éléments du centre définissent leurs propres classes de conjugaison, et donc

Gl=lz@)+ 3 |Orb)].

orbites non triviales

Par le théoréme orbite-stabilisateur, |Stabg(z)| = p?/|Orb(z)], ce qui implique que
|Orb(z)| € {p,p?} pour toutes les orbites non triviales. Par conséquent, en prenant
I’équation ci-dessus modulo p, on trouve que |Z(G)| = 0 mod p, ce qui implique que
Z (@) est non trivial, comme souhaité.

D’apres le dernier point, étant donné que I'ordre d’un sous-groupe doit diviser p? et que
Z(G) est non trivial, |Z(G)| € {p,p*}. Si c’est p?, alors G est abélien et nous avons
terminé. Supposons donc que |Z(G)| = p, alors |G/Z(G)| = p, et donc le quotient doit
étre cyclique, engendré par un élément non trivial. Prenons a € G\ Z(G), tel que aZ(QG)
engendre G/Z(G) comme expliqué, et prenons deux éléments quelconques x1,x2 € G. 11
existe z1, 20 € Z(G) tels que x1 = aF1z et ko = a*2z5. Nous trouvons ainsi que

T1Ty = aklzlak%g = akzzgakl 21 = X271

puisque tous ces éléments commutent entre eux. Ainsi, G est abélien.

Soit & € G un élément non trivial. Puisque G n’est pas cyclique, il engendre un sous-
groupe cyclique (z) = Z/pZ d’ordre p. Choisissons un y € G\ (z), qui engendre également
un sous-groupe cyclique (y) = Z/pZ d’ordre p tel que (z) N (y) = {0} puisque, sinon,
leur intersection (qui est un sous-groupe) serait d’ordre p, ce qui contredirait le fait que
y ¢ (z). Nous construisons un homomorphisme :

fZ/pZ x 7/pZ — G
([n], [m]) — z"y™

Il est clair que cette fonction est bien définie puisque x et y sont d’ordre p. De plus, on
peut facilement montrer que c’est un homomorphisme en utilisant le deuxieme point.
Enfin, il est injectif puisque si z"y™ = 0, alors 2 € (y), et donc 2™ = 0 puisque
(x) N (y) = {0}. Cela implique que n = 0 mod p, ce qui implique & son tour que m =0
mod p également. Par conséquent, f est un homomorphisme injectif entre deux groupes
d’ordre p?, il est donc un isomorphisme.
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Exercise 2. 1l est facile de voir que Aut(Z/27Z) est trivial, donc le seul tel homomorphisme ¢
doit également étre trivial. Ainsi, le seul produit semi-direct est en fait isomorphe au produit
direct Z/27Z x 7./27. Cependant, nous savons que ce groupe et Z/47 ne sont pas isomorphes,
car ce dernier possede un élément d’ordre 4, tandis que le premier n’en a pas.

Exercise 3. Produit semi-direct interne

(1)

Considérons 'application
a:Kx, L — G, (k1)— kL
Nous montrons que « est un isomorphisme de groupes. Notez que pour tout
(k1,01), (k2,12) € K x4 L,
nous avons

Oé((kl, ll) . (kg, 12)) = Oé(]ﬁllk‘Qlfl, 1112) = k111k2l2 = Oé((kl, ll))a((kg, lz))

Cela montre que « est un homomorphisme de groupes. Il découle de I’hypothese KL = G
que « est surjective. Supposons maintenant que a((k,1)) = kl = 1, alors k = [~! donc
I'hypothése K N L = {1} force k =1 = 1. Par conséquent, « est également injective et
donc un isomorphisme.

Considérons I'élément g = klk~'1=! € G pour un certain k € K et [ € L. Puisque L est
normal, nous avons que klk~! € L et donc g € L. De méme, la normalité de K implique
que g € K. Comme K N L est trivial, nous obtenons que g = 1 et donc kIl = lk. 1l
s’ensuit immédiatement que ¢ est ’homomorphisme trivial.

Notez que si ¢ : L — Aut(K) est 'homomorphisme trivial, alors (k1,11) - (k2,l2) =
(lila, k1K) pour tout (k1,11), (k2,l2) € K x,L. Cela implique que la bijection ensembliste
K xL— K x,L, (k1) — (k1) est également un homomorphisme de groupes, donc un
isomorphisme.

Exercise 4. On vérifie que K xy L — L, (k,l) — [ est un homomorphisme de groupes avec
noyau K x {1}. Puisque les noyaux des homomorphismes sont des sous-groupes normaux, nous
avons que K x {1} est normal. Il est également clair que (K x {1}) N ({1} x L) est I’élément
neutre de G et que (K x {1})- ({1} x L) = G. Ainsi, K xy L est le produit semi-direct interne
de K x {1} avec {1} x L.

En utilisant la loi du groupe sur G = K X L, nous avons que

(Ll)(k? 1)(17071 = (1 ) wl(k)vl)(l’l)il = (wl(k%l)(lvlil) = (¢z(’f) : wl(l)’ 1) = (wl(k)) 1)'

Cette identité implique que la bijection ensembliste

K 5ty L (K x {1}) 5 ({1} x L), (k) = ((k, 1), (1,1))

est un homomorphisme de groupes et donc un isomorphisme.

Exercise 5. Appliquer 'exercice sur le produit semi-direct interne avec K = ((123)) < S et
L = ((12)) (vérifiez que toutes les conditions sont satisfaites!).
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Exercise 6. (1) Commengons par trouver Aut(Z/47) : nous savons que ces automorphismes

3)
(4)

correspondent a des choix d’éléments d’ordre 4 dans le codomaine, donc |Aut(Z/4Z)| =
2, et ainsi Aut(Z/47Z) = 7/27. Maintenant, les homomorphismes ¢ : Z/27 — 7./27
correspondent a des choix d’éléments de torsion d’ordre 2 dans le codomaine, et il y en
a exactement 2 : I'identité et le morphisme nul.

Comme nous 'avons vu, le morphisme nul nous donne le produit direct Z/4Z x 7. /27.
Le morphisme ”identité” du point (1) est explicitement donné par

0 2)27 — Aut(Z/AZ)
1—3

ou -3 : Z/AZ — Z/AZ est la multiplication par 3. Ainsi, la structure de groupe de
ZLJAZ %, 7./ 27 est donnée par (a,0) - (¢, d) = (ac,0) et (a,1) - (¢,d) = (3ac, d).
Ce dernier, Z/47Z %, /27, est effectivement isomorphe & Dg. Voir (4).
Rappelez-vous de I’exercice sur le produit semi-direct interne. Définissons K = (o), ou
o est la rotation du n-gone régulier, et L = (), ou 7 est la réflexion. Du fait qu’il a un
indice 2, nous savons que K est normal dans Dy, (voir la série 3). De plus, K (| L = {id}
et KL = Do, (vérifiez cela!). Nous en déduisons que Do, = K X, L. Observons que K
est cyclique d’ordre n, donc K = Z/nZ, tandis que L est d’ordre 2, donc L = Z/27Z. En
analysant la maniere dont les groupes sont identifiés via ces isomorphismes, nous pouvons
voir que ¢ : Z/27Z —Aut(Z/nZ) correspond a 1 — -(—1), ou «(—1) : Z/nZ — Z/nZ est
la multiplication par (—1). Nous avons ainsi trouvé notre ¢ désiré.

Exercise 7. Considérons

¢: F* = GL,(F):a— M, =

S O R
O = O
= o O

c'est-a-dire M, = Diag(a,1,1,1....). On vérifie facilement que ¢ est un homomorphisme de
groupes et que deto¢ = idpx. Par conséquent, la suite exacte courte suivante est scindée a

droite

1 — SLn(F) 5 GLo(F) 2% % - 1.

En utilisant la Proposition 10 du cours 4, cela montre que

GL,(F) 2 SL,,(F) %, F*

ou ¢ : F* — Aut(SL,(F)) est donnée par I’action

a-M=M,MM,"



