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Exercise 1. Supposons que G ne soit pas cyclique.

(1) Soit G ↷ G l’action par conjugaison, définie par g · x = gxg−1. L’ensemble X = G est
partitionné par ses orbites, qui sont des classes de conjugaison d’éléments. Notez que
x ∈ Z(G) si et seulement si son orbite est triviale puisque gxg−1 = x pour tout g ∈ G,
c’est-à-dire

x ∈ Z(G) ⇐⇒ Orb(x) = x.

Ainsi, les éléments du centre définissent leurs propres classes de conjugaison, et donc

|G| = |Z(G)|+
∑

orbites non triviales

|Orb(x)|.

Par le théorème orbite-stabilisateur, |StabG(x)| = p2/|Orb(x)|, ce qui implique que
|Orb(x)| ∈ {p, p2} pour toutes les orbites non triviales. Par conséquent, en prenant
l’équation ci-dessus modulo p, on trouve que |Z(G)| = 0 mod p, ce qui implique que
Z(G) est non trivial, comme souhaité.

(2) D’après le dernier point, étant donné que l’ordre d’un sous-groupe doit diviser p2 et que
Z(G) est non trivial, |Z(G)| ∈ {p, p2}. Si c’est p2, alors G est abélien et nous avons
terminé. Supposons donc que |Z(G)| = p, alors |G/Z(G)| = p, et donc le quotient doit
être cyclique, engendré par un élément non trivial. Prenons a ∈ G\Z(G), tel que aZ(G)
engendre G/Z(G) comme expliqué, et prenons deux éléments quelconques x1, x2 ∈ G. Il
existe z1, z2 ∈ Z(G) tels que x1 = ak1z1 et x2 = ak2z2. Nous trouvons ainsi que

x1x2 = ak1z1a
k2z2 = ak2z2a

k1z1 = x2x1

puisque tous ces éléments commutent entre eux. Ainsi, G est abélien.

(3) Soit x ∈ G un élément non trivial. Puisque G n’est pas cyclique, il engendre un sous-
groupe cyclique ⟨x⟩ ∼= Z/pZ d’ordre p. Choisissons un y ∈ G\⟨x⟩, qui engendre également
un sous-groupe cyclique ⟨y⟩ ∼= Z/pZ d’ordre p tel que ⟨x⟩ ∩ ⟨y⟩ = {0} puisque, sinon,
leur intersection (qui est un sous-groupe) serait d’ordre p, ce qui contredirait le fait que
y /∈ ⟨x⟩. Nous construisons un homomorphisme :

f : Z/pZ× Z/pZ → G

([n], [m]) 7→ xnym

Il est clair que cette fonction est bien définie puisque x et y sont d’ordre p. De plus, on
peut facilement montrer que c’est un homomorphisme en utilisant le deuxième point.
Enfin, il est injectif puisque si xnym = 0, alors xn ∈ ⟨y⟩, et donc xn = 0 puisque
⟨x⟩ ∩ ⟨y⟩ = {0}. Cela implique que n = 0 mod p, ce qui implique à son tour que m = 0
mod p également. Par conséquent, f est un homomorphisme injectif entre deux groupes
d’ordre p2, il est donc un isomorphisme.
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Exercise 2. Il est facile de voir que Aut(Z/2Z) est trivial, donc le seul tel homomorphisme φ
doit également être trivial. Ainsi, le seul produit semi-direct est en fait isomorphe au produit
direct Z/2Z × Z/2Z. Cependant, nous savons que ce groupe et Z/4Z ne sont pas isomorphes,
car ce dernier possède un élément d’ordre 4, tandis que le premier n’en a pas.

Exercise 3. Produit semi-direct interne

(1) Considérons l’application

α : K ⋊φ L→ G, (k, l) 7→ kl.

Nous montrons que α est un isomorphisme de groupes. Notez que pour tout

(k1, l1), (k2, l2) ∈ K ⋊φ L,

nous avons

α((k1, l1) · (k2, l2)) = α(k1l1k2l
−1
1 , l1l2) = k1l1k2l2 = α((k1, l1))α((k2, l2)).

Cela montre que α est un homomorphisme de groupes. Il découle de l’hypothèseKL = G
que α est surjective. Supposons maintenant que α((k, l)) = kl = 1, alors k = l−1 donc
l’hypothèse K ∩ L = {1} force k = l = 1. Par conséquent, α est également injective et
donc un isomorphisme.

(2) Considérons l’élément g = klk−1l−1 ∈ G pour un certain k ∈ K et l ∈ L. Puisque L est
normal, nous avons que klk−1 ∈ L et donc g ∈ L. De même, la normalité de K implique
que g ∈ K. Comme K ∩ L est trivial, nous obtenons que g = 1 et donc kl = lk. Il
s’ensuit immédiatement que φ est l’homomorphisme trivial.
Notez que si φ : L → Aut(K) est l’homomorphisme trivial, alors (k1, l1) · (k2, l2) =
(l1l2, k1k2) pour tout (k1, l1), (k2, l2) ∈ K⋊φL. Cela implique que la bijection ensembliste
K ×L→ K ⋊φ L, (k, l) 7→ (k, l) est également un homomorphisme de groupes, donc un
isomorphisme.

Exercise 4. On vérifie que K ⋊ψ L → L, (k, l) 7→ l est un homomorphisme de groupes avec
noyau K ×{1}. Puisque les noyaux des homomorphismes sont des sous-groupes normaux, nous
avons que K × {1} est normal. Il est également clair que (K × {1}) ∩ ({1} × L) est l’élément
neutre de G et que (K × {1}) · ({1} × L) = G. Ainsi, K ⋊ψ L est le produit semi-direct interne
de K × {1} avec {1} × L.

En utilisant la loi du groupe sur G = K ⋊ψ L, nous avons que

(1, l)(k, 1)(1, l)−1 = (1 · ψl(k), l)(1, l)−1 = (ψl(k), l)(1, l
−1) = (ψl(k) · ψl(1), 1) = (ψl(k), 1).

Cette identité implique que la bijection ensembliste

K ⋊ψ L→ (K × {1})⋊φ ({1} × L), (k, l) 7→ ((k, 1), (1, l))

est un homomorphisme de groupes et donc un isomorphisme.

Exercise 5. Appliquer l’exercice sur le produit semi-direct interne avec K = ⟨(123)⟩ ⊴ S3 et
L = ⟨(12)⟩ (vérifiez que toutes les conditions sont satisfaites !).
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Exercise 6. (1) Commençons par trouver Aut(Z/4Z) : nous savons que ces automorphismes
correspondent à des choix d’éléments d’ordre 4 dans le codomaine, donc |Aut(Z/4Z)| =
2, et ainsi Aut(Z/4Z) ∼= Z/2Z. Maintenant, les homomorphismes φ : Z/2Z → Z/2Z
correspondent à des choix d’éléments de torsion d’ordre 2 dans le codomaine, et il y en
a exactement 2 : l’identité et le morphisme nul.

(2) Comme nous l’avons vu, le morphisme nul nous donne le produit direct Z/4Z × Z/2Z.
Le morphisme ”identité” du point (1) est explicitement donné par

φ : Z/2Z → Aut(Z/4Z)
1 7→ ·3

où ·3 : Z/4Z → Z/4Z est la multiplication par 3. Ainsi, la structure de groupe de
Z/4Z ⋊φ Z/2Z est donnée par (a, 0) · (c, d) = (ac, 0) et (a, 1) · (c, d) = (3ac, d).

(3) Ce dernier, Z/4Z ⋊φ Z/2Z, est effectivement isomorphe à D8. Voir (4).

(4) Rappelez-vous de l’exercice sur le produit semi-direct interne. Définissons K = ⟨σ⟩, où
σ est la rotation du n-gone régulier, et L = ⟨τ⟩, où τ est la réflexion. Du fait qu’il a un
indice 2, nous savons que K est normal dans D2n (voir la série 3). De plus, K

⋂
L = {id}

et KL = D2n (vérifiez cela !). Nous en déduisons que D2n
∼= K ⋊φ L. Observons que K

est cyclique d’ordre n, donc K ∼= Z/nZ, tandis que L est d’ordre 2, donc L ∼= Z/2Z. En
analysant la manière dont les groupes sont identifiés via ces isomorphismes, nous pouvons
voir que φ : Z/2Z →Aut(Z/nZ) correspond à 1 7→ ·(−1), où ·(−1) : Z/nZ → Z/nZ est
la multiplication par (−1). Nous avons ainsi trouvé notre φ désiré.

Exercise 7. Considérons

ϕ : F× → GLn(F ) : a 7→Ma =


a 0 0 ...
0 1 0 ...
0 0 1 ...
... ... ... ...


c’est-à-dire Ma = Diag(a, 1, 1, 1....). On vérifie facilement que ϕ est un homomorphisme de
groupes et que det ◦ϕ = idF× . Par conséquent, la suite exacte courte suivante est scindée à
droite

1 → SLn(F )
i−→ GLn(F )

det−−→ F× → 1.

En utilisant la Proposition 10 du cours 4, cela montre que

GLn(F ) ∼= SLn(F )⋊φ F
×

où φ : F× → Aut(SLn(F )) est donnée par l’action

a ·M =MaMM−1
a .


