GROUP THEORY 2024 - 25, SOLUTION SHEET 4

Exercise 1. To always do in every course!
Review the lecture and understand /fill in the gaps in the proofs.

Exercise 2. Suppose that G is not cyclic.

(1)

Let G ~ G be the action by conjugation, defined by g -2 = gzg~!. The set X = G is
partitioned by its orbits, which are conjugacy classes of elements. Note that z € Z(G)
if and only if its orbit is trivial since gzg~! =z for all g € G, i.e.

x € Z(G) <= Orb(z) ==.

Hence elements of the center defines their own conjugagy classes, and so

Gl=12@)|+ Y |Orb)l.
non trivial orbits

By the orbit stabilizer theorem |Stabg(z)| = p?/|Orb(z)| which implies that |Orb(z)| €
{p,p*} for all non trivial orbits. Therefore, taking the above equation mod p we find
that |Z(G)| = 0 mod p, henceforth implying that Z(G) is non trivial, as desired.

By the last point, since the order of a subgroup must divide p? and Z(G) is non trivial,
|Z(G)| € {p,p?}. If it is p? then G is abelian and we are done. So suppose that |Z(G)|
|G/Z(G)| = p and so the quotient must be cyclic, generated by any non trivial element.
Let a € G\Z(G), which is such that aZ(G) generates G/Z(G) as explained, and take
any two elements x1,x9 € G. There must exist 21, 20 € Z(G) such that z; = akz; and
x9 = a*2z,. Hence we find that

T1Ty = aklzlak%g = ak222ak121 = 2911

since all these elements commute with each other. Hence G is abelian.

Let € G be non trivial. Since G is not cyclic, it generates a cyclic subgroup (z) = Z/pZ
of order p. Pick any y € G\(x), which also generates a cyclic subgroup (y) = Z/pZ
of order p such that (x) N (y) = {0} since otherwise their intersection (which is a
subgroup) would be of order p as well, contradicting the fact that y ¢ (x). We construct
a homomorphism

fiZ/pZ x Z/pZ — G
([n], [m]) = z"y™

It is clear that this function is well defined since x and y are of order p. Moreover you
can easily show that it is a homomorphism using the second point. Lastly it is injective
since if z"y™ = 0, then 2™ € (y) and so 2" = 0 since (z) N (y) = {0}. This implies
that n = 0 mod p, which in turn implies that m = 0 mod p as well. Therefore f is an
injective homomorphism between two groups of order p?, hence is an isomorphism.
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Exercise 3. It is straightforward to see that Aut(Z/2Z) is trivial, so the only such homomor-
phism ¢ must also be the trivial one. Hence, the only semi-direct product is in fact isomorphic
to the direct product Z/27Z x Z/2Z. However, we know that this group and Z/47Z are not
isomorphic, because the latter has an element of order 4, while the first does not.

Exercise 4. Internal semi-direct product

(1)

Consider the map
a:Kx,L— G, (k1)— kL

We show that « is an isomorphism of groups. Note that for all (k1,11), (k2,l2) € K X, L
we have that:

a((ky,1h) - (ko 12)) = akalykaly " ilo) = knlikaly = o (ky, 1)) o((a, Io) ).

This shows that « is a group homomorphism. It follows from the assumption KL = G
that « is surjective. Now suppose a((k,1)) = kl = 1, then k = [~! therefore the as-
sumption K N L = {1} forces k = [ = 1. Hence « is also injective and therefore an
isomorphism.

Consider the element g = klk~'~! € G for some k € K and [ € L. Since L is normal,
we have that klk~! € L and hence g € L. Similarly, normality of K yields that g € K.
Since K N L is trivial, we obtain that ¢ = 1 and hence kl = lk. It follows straightaway
that ¢ is the trivial homomorphism.

Note that if ¢ : L — Aut(K) is the trivial homomorphism then (ki,11) - (ko,l2) =
(lilg, k1ko) for all (k1,11), (k2,12) € K x, L. This implies that the set theoretic bijec-
tion K x L = K %, L, (k,l) — (k,l) is also a group homomorphism and hence an
isomorphism.

Exercise 5. One checks that K x4 L — L, (k1) +— [ is a group homomorphism with ker-
nel K x {1}. Since Kernels of homomorphisms are normal subgroups we have that K x {1}
is normal. It is also clear that (K x {1}) N ({1} x L) is the identity element of G' and that
(K x {1})- ({1} x L) = G. Hence K Xy L is the internal semi-direct product of K x {1} with
{1} x L.

Using the group law on G = K X, L, we have that:

(1’l)(k7 1)(17l)_1 = (1 ) T/Jz(k‘)»l)(l,l)_l = (¢l(k)7l)(1’l_1) = (wl(k) : Tﬂz(l), 1) = (wl(k)7 1)'

This identity implies that the set theoretic bijection

K sty L (K x {1}) 1 ({1} x L), (k) = ((k, 1), (1,1))

is a group homomorphism and hence an isomorphism.
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Exercise 6. Apply exercise 2.(1) with K =< (123) >< S3 and L =< (12) > (check that all
the conditions are satified!).

Exercise 7. (1) Let us first find Aut(Z/4Z): we know that these correspond to choices of
elements of order 4 in the codomain, so |Aut(Z/4Z)| = 2 and thus Aut(Z/4Z) = Z/2Z.
Now, the homomorphisms ¢ : Z/27Z — 7Z/2Z correspond to choices of elements of 2-
torsion in the codomain, and there are exactly 2 of these: the identity and the zero
morphism.

(2) As we have seen, the zero morphism gives us the direct product Z/4Z x 7Z/27Z. The
"identity” morphism from point (1) is explicitely given by

0 Z/27 — Aut(Z/AZ)
1—-3
where -3 : Z/AZ — Z/4AZ is the multiplication by 3. Hence, the group structure of
LJAZ %, /27 is given by (a,0) - (¢,d) = (a + ¢,d) and (a, 1) - (¢,d) = (a + 3¢, 1+ d).

(3) The latter, Z/4Z x, 7./27Z, is indeed isomorphic to Dg. See (4).

(4) Recall exercise 2, point (1). Define K =< ¢ >, where o is the rotation of the regular
n-gon, and L =< 7 >, where 7 is the reflection. By the fact that it has index 2, we
know that K is normal in Dy, (see sheet 3). Moreover, K (L = {id} and KL = Dy,
(check this!). We infer that Dy, = K x, L. Observe that K is cyclic of order n, so
K = Z/nZ, while L is of order 2, so L = 7Z/27. By analyzing the way the groups are
identified via these isomorphisms, we can see that ¢ : Z/2Z — Aut(Z/nZ) corresponds
to 1 +— -(—1), where -(—1) : Z/nZ — Z/nZ is the multiplication with (—1). We have
thus found our desired ¢.

Exercise 8. Consider
a

O = O
_— o O

¢: F* = GLy(F), a—~ M, = 0

That is M, = Diag(a, 1,1, 1....). One verifies readily that ¢ is a group homomorphism and that
det o ¢ = Idpx. Hence the following short exact sequence splits on the right:

1= SLy(F) % GL,(F) <% F* — 1.

Using Proposition 10 of lecture 4, this shows that:
GL,(F) = SL,(F) x, F*.

Where ¢ : F* — Aut(SL,(F)) is given by the action :
a-M=M,MM,"



