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Exercise 1. To always do in every course!
Review the lecture and understand/fill in the gaps in the proofs.

Exercise 2. Suppose that G is not cyclic.

(1) Let G ↷ G be the action by conjugation, defined by g · x = gxg−1. The set X = G is
partitioned by its orbits, which are conjugacy classes of elements. Note that x ∈ Z(G)
if and only if its orbit is trivial since gxg−1 = x for all g ∈ G, i.e.

x ∈ Z(G) ⇐⇒ Orb(x) = x.

Hence elements of the center defines their own conjugagy classes, and so

|G| = |Z(G)|+
∑

non trivial orbits

|Orb(x)|.

By the orbit stabilizer theorem |StabG(x)| = p2/|Orb(x)| which implies that |Orb(x)| ∈
{p, p2} for all non trivial orbits. Therefore, taking the above equation mod p we find
that |Z(G)| = 0 mod p, henceforth implying that Z(G) is non trivial, as desired.

(2) By the last point, since the order of a subgroup must divide p2 and Z(G) is non trivial,
|Z(G)| ∈ {p, p2}. If it is p2 then G is abelian and we are done. So suppose that |Z(G)|
|G/Z(G)| = p and so the quotient must be cyclic, generated by any non trivial element.
Let a ∈ G\Z(G), which is such that aZ(G) generates G/Z(G) as explained, and take
any two elements x1, x2 ∈ G. There must exist z1, z2 ∈ Z(G) such that x1 = ak1z1 and
x2 = ak2z2. Hence we find that

x1x2 = ak1z1a
k2z2 = ak2z2a

k1z1 = x2x1

since all these elements commute with each other. Hence G is abelian.
(3) Let x ∈ G be non trivial. Since G is not cyclic, it generates a cyclic subgroup ⟨x⟩ ∼= Z/pZ

of order p. Pick any y ∈ G\⟨x⟩, which also generates a cyclic subgroup ⟨y⟩ ∼= Z/pZ
of order p such that ⟨x⟩ ∩ ⟨y⟩ = {0} since otherwise their intersection (which is a
subgroup) would be of order p as well, contradicting the fact that y /∈ ⟨x⟩. We construct
a homomorphism

f : Z/pZ× Z/pZ → G

([n], [m]) 7→ xnym

It is clear that this function is well defined since x and y are of order p. Moreover you
can easily show that it is a homomorphism using the second point. Lastly it is injective
since if xnym = 0, then xn ∈ ⟨y⟩ and so xn = 0 since ⟨x⟩ ∩ ⟨y⟩ = {0}. This implies
that n = 0 mod p, which in turn implies that m = 0 mod p as well. Therefore f is an
injective homomorphism between two groups of order p2, hence is an isomorphism.
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Exercise 3. It is straightforward to see that Aut(Z/2Z) is trivial, so the only such homomor-
phism φ must also be the trivial one. Hence, the only semi-direct product is in fact isomorphic
to the direct product Z/2Z × Z/2Z. However, we know that this group and Z/4Z are not
isomorphic, because the latter has an element of order 4, while the first does not.

Exercise 4. Internal semi-direct product

(1) Consider the map

α : K ⋊φ L→ G, (k, l) 7→ kl.

We show that α is an isomorphism of groups. Note that for all (k1, l1), (k2, l2) ∈ K⋊φL
we have that:

α((k1, l1) · (k2, l2)) = α(k1l1k2l
−1
1 , l1l2) = k1l1k2l2 = α((k1, l1))α((k2, l2)).

This shows that α is a group homomorphism. It follows from the assumption KL = G
that α is surjective. Now suppose α((k, l)) = kl = 1, then k = l−1 therefore the as-
sumption K ∩ L = {1} forces k = l = 1. Hence α is also injective and therefore an
isomorphism.

(2) Consider the element g = klk−1l−1 ∈ G for some k ∈ K and l ∈ L. Since L is normal,
we have that klk−1 ∈ L and hence g ∈ L. Similarly, normality of K yields that g ∈ K.
Since K ∩ L is trivial, we obtain that g = 1 and hence kl = lk. It follows straightaway
that φ is the trivial homomorphism.
Note that if φ : L → Aut(K) is the trivial homomorphism then (k1, l1) · (k2, l2) =
(l1l2, k1k2) for all (k1, l1), (k2, l2) ∈ K ⋊φ L. This implies that the set theoretic bijec-
tion K × L → K ⋊φ L, (k, l) 7→ (k, l) is also a group homomorphism and hence an
isomorphism.

Exercise 5. One checks that K ⋊ψ L → L, (k, l) 7→ l is a group homomorphism with ker-
nel K × {1}. Since Kernels of homomorphisms are normal subgroups we have that K × {1}
is normal. It is also clear that (K × {1}) ∩ ({1} × L) is the identity element of G and that
(K × {1}) · ({1} × L) = G. Hence K ⋊ψ L is the internal semi-direct product of K × {1} with
{1} × L.

Using the group law on G = K ⋊ψ L, we have that:

(1, l)(k, 1)(1, l)−1 = (1 · ψl(k), l)(1, l)−1 = (ψl(k), l)(1, l
−1) = (ψl(k) · ψl(1), 1) = (ψl(k), 1).

This identity implies that the set theoretic bijection

K ⋊ψ L→ (K × {1})⋊φ ({1} × L), (k, l) 7→ ((k, 1), (1, l))

is a group homomorphism and hence an isomorphism.
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Exercise 6. Apply exercise 2.(1) with K =< (123) >⊴ S3 and L =< (12) > (check that all
the conditions are satified!).

Exercise 7. (1) Let us first find Aut(Z/4Z): we know that these correspond to choices of
elements of order 4 in the codomain, so |Aut(Z/4Z)| = 2 and thus Aut(Z/4Z) ∼= Z/2Z.
Now, the homomorphisms φ : Z/2Z → Z/2Z correspond to choices of elements of 2-
torsion in the codomain, and there are exactly 2 of these: the identity and the zero
morphism.

(2) As we have seen, the zero morphism gives us the direct product Z/4Z × Z/2Z. The
”identity” morphism from point (1) is explicitely given by

φ : Z/2Z → Aut(Z/4Z)

1 7→ ·3
where ·3 : Z/4Z → Z/4Z is the multiplication by 3. Hence, the group structure of
Z/4Z ⋊φ Z/2Z is given by (a, 0) · (c, d) = (a+ c, d) and (a, 1) · (c, d) = (a+ 3c, 1 + d).

(3) The latter, Z/4Z ⋊φ Z/2Z, is indeed isomorphic to D8. See (4).
(4) Recall exercise 2, point (1). Define K =< σ >, where σ is the rotation of the regular

n-gon, and L =< τ >, where τ is the reflection. By the fact that it has index 2, we
know that K is normal in D2n (see sheet 3). Moreover, K

⋂
L = {id} and KL = D2n

(check this!). We infer that D2n
∼= K ⋊φ L. Observe that K is cyclic of order n, so

K ∼= Z/nZ, while L is of order 2, so L ∼= Z/2Z. By analyzing the way the groups are
identified via these isomorphisms, we can see that ϕ : Z/2Z →Aut(Z/nZ) corresponds
to 1 7→ ·(−1), where ·(−1) : Z/nZ → Z/nZ is the multiplication with (−1). We have
thus found our desired φ.

Exercise 8. Consider

ϕ : F× → GLn(F ), a 7→Ma =


a 0 0 ...
0 1 0 ...
0 0 1 ...
... ... ... ...

 .

That is Ma = Diag(a, 1, 1, 1....). One verifies readily that ϕ is a group homomorphism and that
det ◦ ϕ = IdF× . Hence the following short exact sequence splits on the right:

1 → SLn(F )
i−→ GLn(F )

det−−→ F× → 1.

Using Proposition 10 of lecture 4, this shows that:

GLn(F ) ∼= SLn(F )⋊φ F
×.

Where φ : F× → Aut(SLn(F )) is given by the action :

a ·M =MaMM−1
a .


