
THÉORIE DES GROUPES 2024 - 25, SOLUTIONS 3

Exercise 1. Sous-groupes normaux et quotients de groupes
Voir les notes de cours Structures algébriques.

Exercise 2. Premier théorème d’isomorphisme
Voir les notes de cours Structures algébriques.

Exercise 3. Théorème de correspondance et troisième théorème d’isomorphisme
Voir les notes de cours Structures algébriques.

Exercise 4. Deuxième théorème d’isomorphisme
Voir les notes de cours Structures algébriques.

Exercise 5. Équivalence des définitions des actions de groupe : Très important ! À retenir et
utiliser en pratique !
Nous construisons une application

f : {Φ : G → Bij(X) | Φ est une action} ∼= {· : G×X → X| (1) & (2) tiennent}

donnée par

f : Φ 7→ ·Φ
où ·Φ : G × X → X est donnée par g ·Φ x = Φ(g)(x). Vérifions que cette application est bien
définie, c’est-à-dire que ·Φ satisfait (1) et (2) :

(1) eG ·Φ x = Φ(eG)(x) = x, pour tout x ∈ X, par le fait que Φ est une action.

(2) g ·Φ (h ·Φ x) = g ·Φ Φ(h)(x) = Φ(g)(Φ(h)(x)) = Φ(gh)(x) = (gh) ·Φ x, pour tous g, h ∈ G
et x ∈ X, encore une fois parce que Φ est une action.

De la même manière, nous construisons maintenant une application dans l’autre sens

g : {· : G×X → X| (1) & (2) tiennent} ∼= {Φ : G → Bij(X) | Φ est une action}

donnée par

· 7→ Φ·

où Φ· : G → Bij(X) est donnée par Φ·(g)(x) = g · x. Vérifions que cette application est bien
définie, c’est-à-dire que Φ· est une action. D’après les notes de cours, il suffit de prouver la
multiplicativité et que chaque Φ·(g) : X → X est une bijection :

(1) La multiplicativité découle de celle de · : Φ·(gh)(x) = (gh)·x = g·(h·x) = Φ·(g)(Φ·(h)(x))
pour tous g, h ∈ G et x ∈ X, donc Φ·(gh) = Φ·(g) ◦ Φ·(h).
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(2) Montrons que pour tout g ∈ G, Φ·(g) est une bijection. Pour la surjectivité, prenons
x ∈ X arbitrairement. Alors Φ·(g)(g

−1 · x) = g · (g−1 · x) = (g · g−1) · x = eG · x = x.
Pour l’injectivité, prenons x, y ∈ X avec g · x = Φ·(g)(x) = Φ·(g)(y) = g · y. En prenant
g−1 · (g · x) = g−1 · (g · y), on obtient x = y.

Il est facile de vérifier que f ◦g et g ◦f sont les identités sur les ensembles respectifs, nous avons
donc la bijection désirée.

Exercise 6. Pour prouver que l’action Φ : G → Bij(G/H) donnée par Φg(aH) = gaH n’est pas
fidèle, nous devons trouver g ̸= g′ ∈ G tels que Φg = Φg′ . Comme H a au moins deux éléments,
prenons g et g′ comme étant deux éléments différents de H. Montrons que Φg(aH) = Φg′(aH),
pour tout a ∈ G. Observons que Φg(aH) = Φg′(aH) ⇐⇒ gaH = g′aH ⇐⇒ a−1g′−1ga ∈ H,
mais cela est vrai pour tout a ∈ G, car g′−1g ∈ H par construction et H est normal.

Exercise 7. Soit g ∈ G, il est clair que si g ∈ H alors gHg−1 = H. Si g /∈ H, alors puisque
l’indice de H dans G est deux, nous avons que

G/H = {H, gH} et H\G = {H,Hg}.

Cela implique que gH = Hg en tant qu’ensembles. Il en découle que gHg−1 = H.

Exercise 8. Quelques propriétés des classes utiles en pratique

(1) Nous avons les équivalences suivantes

gH = g′H ⇐⇒ ∃h ∈ H tel que g′ = gh

⇐⇒ ∃h ∈ H tel que g−1g′ = h

⇐⇒ g−1g′ ∈ H.

(2) Vous avez montré en cours que les classes forment une partition de G, elles doivent donc
cöıncider ou être disjointes.

(3) Supposons que gH ∩g′K ̸= ∅. Cela signifie qu’il existe un élément x ∈ G tel que x ∈ gH
et x ∈ g′K. Ainsi, nous avons

x = gh1 = g′k1

pour certains h1 ∈ H et k1 ∈ K. En réarrangeant cette équation, nous obtenons

g−1g′ = h1k
−1
1 . (1)

Nous allons montrer par double inclusion que gH ∩ g′K = gh1(H ∩ K). Supposons
d’abord que y ∈ gH ∩ g′K. Nous pouvons écrire

y = gh2 = g′k2

pour certains h2 ∈ H et k2 ∈ K. En réarrangeant l’équation et en utilisant (1), nous
obtenons

h2 = g−1g′k2 = (h1k
−1
1 )k2.
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De là, nous pouvons déduire que h−1
1 h2 = k−1

1 k2 ∈ K ∩H. Ainsi, nous pouvons écrire

y = gh2 = gh1(k
−1
1 k2) ∈ gh1(K ∩H).

Cela prouve la première inclusion. La deuxième inclusion est directe.

Exercise 9. (1) Soit φ : X → Y un isomorphisme de G-ensembles. Supposons que X soit
transitif. Soient y1, y2 ∈ Y . Comme φ est une bijection, il existe x1, x2 ∈ X tels que
φ(x1) = y1 et φ(x2) = y2. Comme X est transitif, il existe g ∈ G tel que g · x1 = x2. En
appliquant l’isomorphisme φ des deux côtés, on obtient

g · y1 = g · φ(x1) = φ(g · x1) = φ(x2) = y2.

Ainsi, Y est transitif. Si Y est transitif, montrez que φ−1 : Y → X est un morphisme de
G-ensembles et appliquez le même raisonnement à φ−1 pour montrer que X est transitif.

(2) Immédiat.

(3) Nous construisons une fonction

{Classes de conjugaison de sous-groupes H ≤ G} → X/ ∼
[H] 7→ [G/H]

où G/H est muni de l’action habituelle de G. Cette action est clairement transitive. De
plus, cette application est bien définie car si [H] = [H ′], c’est-à-dire que H et H ′ sont
conjugués, alors les deux G-ensembles G/H et G/H ′ sont isomorphes d’après l’exercice
3 de la semaine 2. Par conséquent, ils appartiennent à la même classe d’isomorphisme
et définissent ainsi le même élément [G/H] = [G/H ′] de X/ ∼.

Nous montrons que cette fonction est bijective. Elle est injective car si H et H ′ sont
des sous-groupes tels que G/H et G/H ′ sont isomorphes en tant que G-ensembles, alors
H et H ′ sont conjugués d’après l’exercice 3 de la semaine 2.

Pour montrer qu’elle est surjective, soit G ↷ X un G-ensemble transitif. Choisissez
un point x ∈ X et considérez son stabilisateur H = StabG(x). Par le théorème orbite-
stabilisateur, il existe une bijection entre X et G/H donnée par

f : G/H → X

gH 7→ g · x.
Cette application est G-équivariante car

f(a · gH) = f(agH) = ag · x = a · (g · x) = a · f(gH)

et donc G/H ∼= X en tant que G-ensembles. Par conséquent, tout G-ensemble transitif
est isomorphe à G/H pour un certain sous-groupe H de G. Cela montre la surjectivité.

(4) (a) G = Z/4Z. Ses sous-groupes sont
— ⟨0⟩ (sous-groupe trivial)

— ⟨2⟩ ∼= Z/2Z
— Z/4Z.

Aucun de ces sous-groupes n’est conjugué (car Z/4Z est abélien), donc nous avons
trois classes de conjugaison distinctes. Ainsi, il y a trois classes d’isomorphisme
d’actions transitives de Z/4Z.



4 THÉORIE DES GROUPES 2024 - 25, SOLUTIONS 3

(b) G = Z/8Z. Ses sous-groupes sont
— ⟨0⟩
— ⟨4⟩ ∼= Z/2Z
— ⟨2⟩ ∼= Z/4Z
— Z/8Z.

Encore une fois, aucun de ces sous-groupes n’est conjugué, donc il y a quatre classes
d’isomorphisme distinctes d’actions transitives de Z/8Z.

(c) G = Z/2Z× Z/2Z. Ses sous-groupes sont
— ⟨(0, 0)⟩ (sous-groupe trivial)

— ⟨(1, 0)⟩ ∼= Z/2Z
— ⟨(0, 1)⟩ ∼= Z/2Z
— ⟨(1, 1)⟩ ∼= Z/2Z
— Z/2Z× Z/2Z.

Tous ces sous-groupes sont distincts et non conjugués (car Z/2Z×Z/2Z est abélien),
donc il y a cinq classes d’isomorphisme distinctes d’actions transitives.

(d) G = S3. Ses sous-groupes sont

— ⟨e⟩ (sous-groupe trivial)

— Trois sous-groupes isomorphes à Z/2Z (générés par des transpositions)

— ⟨(123)⟩ ∼= Z/3Z
— S3.

Les trois sous-groupes isomorphes à Z/2Z sont conjugués entre eux, et les autres
ne le sont pas. Par conséquent, nous avons quatre classes d’isomorphisme distinctes
d’actions transitives de S3.


