THEORIE DES GROUPES 2024 - 25, SOLUTIONS 3

Exercise 1. Sous-groupes normauz et quotients de groupes
Voir les notes de cours Structures algébriques.

Exercise 2. Premier théoréme d’isomorphisme
Voir les notes de cours Structures algébriques.

Exercise 3. Théoréme de correspondance et troisieme théoréme d’isomorphisme
Voir les notes de cours Structures algébriques.

Exercise 4. Deuxieme théoréme d’isomorphisme
Voir les notes de cours Structures algébriques.

Exercise 5. Fquivalence des définitions des actions de groupe : Trés important! A retenir et
utiliser en pratique !
Nous construisons une application

f:{®:G — Bij(X) | ® est une action} = {-: G x X — X| (1) & (2) tiennent}
donnée par
f:®— 5
ol - : G x X — X est donnée par g -3 z = ®(g)(x). Vérifions que cette application est bien
définie, c’est-a-dire que -¢ satisfait (1) et (2) :
(1) eg ¢ © = P(eg)(x) = z, pour tout x € X, par le fait que ® est une action.

(2) 9-¢ (h-ax) =g-0 (h)(x) = 2(g)(2(h)(x)) = (gh)(x) = (gh) -¢ , pour tous g,h € G
et x € X, encore une fois parce que ® est une action.

De la méme maniere, nous construisons maintenant une application dans ’autre sens
g:{:GxX — X| (1) & (2) tiennent} = {® : G — Bij(X) | ¢ est une action}

donnée par
= P,

ou ®. : G — Bij(X) est donnée par ®.(g)(x) = g - x. Vérifions que cette application est bien
définie, c’est-a-dire que ®. est une action. D’apres les notes de cours, il suffit de prouver la
multiplicativité et que chaque ®.(g) : X — X est une bijection :

(1) La multiplicativité découle de celle de - : ®.(gh)(z) = (gh)-x = g-(h-x) = ©.(¢)(P.(h)(z))
pour tous g,h € G et x € X, donc ®.(gh) = ®.(g) o ®.(h).
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(2) Montrons que pour tout g € G, ®.(g) est une bijection. Pour la surjectivité, prenons
x € X arbitrairement. Alors ®.(g)(¢!-2) =g- (g7 - 2)=(9-9g7) - v =eq -2 =2.
Pour 'injectivité, prenons z,y € X avec g-x = ®.(¢9)(x) = ®.(¢9)(y) = g - y. En prenant
gt (g-z)=9g ' (g9-y), on obtient z = y.

Il est facile de vérifier que fog et go f sont les identités sur les ensembles respectifs, nous avons
donc la bijection désirée.

Exercise 6. Pour prouver que 'action ¢ : G — Bij(G/H) donnée par ®4(aH) = gaH n’est pas
fidele, nous devons trouver g # ¢’ € G tels que &, = ®,. Comme H a au moins deux éléments,

prenons g et g’ comme étant deux éléments différents de H. Montrons que ®4(aH) = @4 (aH),

pour tout a € G. Observons que ®4(aH) = ¢, (aH) < gaH = g'aH <= a 'g " 'ga € H,

mais cela est vrai pour tout a € G, car ¢'"'g € H par construction et H est normal.

Exercise 7. Soit g € G, il est clair que si g € H alors gHg~! = H. Si g ¢ H, alors puisque
I'indice de H dans G est deux, nous avons que

G/H ={H, gH} et H\G = {H, Hg}.

Cela implique que gH = Hg en tant qu’ensembles. Il en découle que gHg™' = H.

Exercise 8. Quelques propriétés des classes utiles en pratique
(1) Nous avons les équivalences suivantes
gH = ¢H <= 3h € H tel que ¢’ = gh
<~ JheHtelqueg g =h
— ¢ ¢ € H.
(2) Vous avez montré en cours que les classes forment une partition de G, elles doivent donc
coincider ou étre disjointes.

(3) Supposons que gH Ng’'K # (). Cela signifie qu’il existe un élément x € G tel que = € gH
et x € ¢ K. Ainsi, nous avons

x = gh1 = ¢’k
pour certains h; € H et k; € K. En réarrangeant cette équation, nous obtenons
97g =ikt (1)

Nous allons montrer par double inclusion que gH N ¢’K = ghi(H N K). Supposons
d’abord que y € gH N ¢’ K. Nous pouvons écrire

y=ghs=g'ks
pour certains hy € H et ko € K. En réarrangeant I’équation et en utilisant (1), nous

obtenons
hy =g tg'ka = (hiky )k
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De la, nous pouvons déduire que hl_lhg =k 'ky € K N H. Ainsi, nous pouvons écrire
y = ghs = gh1(ky 'k2) € ghi(K N H).

Cela prouve la premiere inclusion. La deuxieme inclusion est directe.

Exercise 9. (1) Soit ¢ : X — Y un isomorphisme de G-ensembles. Supposons que X soit

(4)

transitif. Soient y1,y2 € Y. Comme ¢ est une bijection, il existe x1,x9 € X tels que
o(z1) = y1 et p(x2) = y2. Comme X est transitif, il existe g € G tel que g-x; = x2. En
appliquant I'isomorphisme ¢ des deux cotés, on obtient

g-y1 =9 e(x1) = @lg-11) = p(r2) = 2.
Ainsi, Y est transitif. Si Y est transitif, montrez que ¢! : Y — X est un morphisme de
G-ensembles et appliquez le méme raisonnement & ¢! pour montrer que X est transitif.

Immédiat.
Nous construisons une fonction

{Classes de conjugaison de sous-groupes H < G} — X'/ ~

[H] = [G/H]
ou G/H est muni de l'action habituelle de G. Cette action est clairement transitive. De
plus, cette application est bien définie car si [H] = [H'], c’est-a-dire que H et H' sont

conjugués, alors les deux G-ensembles G/H et G/H' sont isomorphes d’apres 'exercice
3 de la semaine 2. Par conséquent, ils appartiennent a la méme classe d’isomorphisme
et définissent ainsi le méme élément [G/H| = [G/H'] de X/ ~.

Nous montrons que cette fonction est bijective. Elle est injective car si H et H' sont
des sous-groupes tels que G/H et G/H' sont isomorphes en tant que G-ensembles, alors
H et H' sont conjugués d’apres I'exercice 3 de la semaine 2.

Pour montrer qu’elle est surjective, soit G ~ X un G-ensemble transitif. Choisissez
un point z € X et considérez son stabilisateur H = Stabg(z). Par le théoréme orbite-
stabilisateur, il existe une bijection entre X et G/H donnée par

f:G/H— X
gH — g - x.
Cette application est G-équivariante car

fla-gH) = flagH) =ag-z=a-(g9-2) =a- f(gH)

et donc G/H = X en tant que G-ensembles. Par conséquent, tout G-ensemble transitif
est isomorphe & G/H pour un certain sous-groupe H de G. Cela montre la surjectivité.
(a) G =Z/4Z. Ses sous-groupes sont

— (0) (sous-groupe trivial)

— (2> 7/27

— Z/AZ.

Aucun de ces sous-groupes n’est conjugué (car Z/4Z est abélien), donc nous avons

trois classes de conjugaison distinctes. Ainsi, il y a trois classes d’isomorphisme
d’actions transitives de Z/4Z.
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G = Z/8Z. Ses sous-groupes sont
—(0)
— (4) 2 7Z/27
— (2) 2 Z/47
— Z/8Z.
Encore une fois, aucun de ces sous-groupes n’est conjugué, donc il y a quatre classes
d’isomorphisme distinctes d’actions transitives de Z/8Z.
G =7/2Z x Z/2Z. Ses sous-groupes sont

— ((0,0)) (sous-groupe trivial)
— ((1,0) =Z/2Z
—((0,1)) =Z/2Z
—((L,1)) =Z/2Z

— Z/27 x Z]27Z.

Tous ces sous-groupes sont distincts et non conjugués (car Z /27 x Z /27 est abélien),
donc il y a cinq classes d’isomorphisme distinctes d’actions transitives.

G = S3. Ses sous-groupes sont
— (e) (sous-groupe trivial)
— Trois sous-groupes isomorphes a Z/27 (générés par des transpositions)
— ((123)) = 7Z/37Z
— Sg.
Les trois sous-groupes isomorphes a Z/27 sont conjugués entre eux, et les autres

ne le sont pas. Par conséquent, nous avons quatre classes d’isomorphisme distinctes
d’actions transitives de S3.



