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Exercise 1. À faire vous-même.

Exercise 2. (1) Pour chaque k-espace vectoriel V , il existe une représentation G ↷ V
unique, car il existe un homomorphisme unique G → GL(V ).

(2) Soit G ↷ V une représentation de dimension 1. Puisque V n’a pas de sous-espace propre,
elle ne peut pas avoir de sous-représentation propre.

(3) L’action triviale de G sur C est irréductible d’après le point 2).

Exercise 3. Supposons que V soit irréductible. Puisque ⟨G·v⟩C ⊆ V est une sous-représentation,
elle doit être soit triviale, soit égale à V . Elle ne peut pas être triviale car 0 ̸= v ∈ ⟨G ·v⟩C, donc
on doit avoir ⟨G · v⟩C = V .

Inversement, si V n’est pas irréductible, il existe une sous-représentation propre W ⊂ V .
Pour tout w ̸= 0 ∈ W , on a {0} ≠ ⟨G · w⟩C ⊆ W ⊊ V .

Exercise 4. (1) Soit V l’espace vectoriel C ayant pour base G (comme ensemble). En
particulier dimV = |G|. Considérons la représentation G ↷ V définie par :

g ∈ G 7→ Φg : V → V

donnée sur les éléments de la base par Φg(h) = gh pour tout h ∈ G. Comme Φg est une
bijection sur la base G, c’est un automorphisme linéaire comme désiré. Il est immédiat
de vérifier que cela définit effectivement une représentation de V . De plus, Φg = IdV si
et seulement si g = 1 ∈ G est l’élément neutre, ce qui montre que

G → GL(V ) ∼= GL|G|(C)
est injective.

Cette représentation est appelée la représentation par permutations de G.

(2) Fixons un vecteur v ̸= 0 ∈ V . Il suffit de remarquer que l’ensemble {g · v|g ∈ G} ⊂ V
engendre l’espace vectoriel ⟨G · v⟩C = V , ce qui permet de conclure que

dimV = dim⟨G · v⟩C ≤ |{g · v|g ∈ G}| ≤ |G|.

Exercise 5. (1) Soit ρ : Sn → GL(C) ∼= C× une représentation unidimensionnelle de Sn.
Si τ est une transposition, alors id = ρ(id) = ρ(τ2) = ρ(τ)2, donc ρ(τ) = ±1. Comme
C× est un groupe commutatif, ρ(ghg−1) = ρ(h) pour tous g, h ∈ Sn. En particulier,
comme toutes les transpositions sont conjuguées, elles sont toutes envoyées sur 1 ou −1.
Tous les éléments de Sn peuvent être écrits comme un produit de transpositions (nombre
pair ou impair selon leur signature), donc si toutes les transpositions sont envoyées sur
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1, alors ρ est la représentation triviale, et si elles sont envoyées sur −1, alors ρ est la
représentation signature, c’est-à-dire ρ = sgn.

(2) (a) Une base de V est donnée par {e1 − en, e2 − en, . . . , en−1 − en}. En effet, tous ces
éléments appartiennent à V . Si (x1, . . . , xn) ∈ V , alors xn = −

∑
i<n xi, donc on

peut écrire (x1, . . . , xn) = x1(e1− en)+x2(e2− en)+ . . .+xn−1(en−1− en), donc la
famille est génératrice. On peut facilement vérifier qu’elle est libre dans Cn, donc
c’est une base.

(b) Soit ρ : Sn → GL(V ) la représentation définie par

ρ(σ)(x1, . . . , xn) = (xσ(1), . . . , xσ(n)).

Il est clair que (xσ(1), . . . , xσ(n)) ∈ V , car nous avons simplement permuté les mêmes
coefficients. (Vérifiez vous-même que c’est bien un morphisme de groupes !)

(c) Nous allons utiliser l’exercice 3. Prenons v = (v1, . . . , vn) ∈ V . Supposons sans
perte de généralité que v1 ̸= v2. Observons que (12) · v − v = (v2 − v1)(e1 − e2).
Par conséquent, e1 − e2 ∈ ⟨Sn · v⟩C. En agissant par des permutations adaptées sur
e1 − e2, on peut obtenir tous les éléments de la base ci-dessus, donc on conclut que
⟨Sn · v⟩C = V .

Exercise 6. (1) Soient g, h ∈ G et T ∈ HomC(V,W ) arbitraire. Alors

((gh) · T )(v) = (gh) · (T ((gh)−1 · v))

D’autre part

g · (h · T )(v) = g · ((h · T )(h−1v)) = g · ((h · T )(h−1·)(g−1v)) = (gh)T (h−1g−1v)

donc le résultat est prouvé.

(2) Montrons cela par double inclusion. Prenons T ∈ HomC[G](V,W ) arbitraire. On sait que
T commute avec l’action de tout élément de G, donc

(g · T )(v) = g · T (g−1v) = g · g−1 · T (v) = T (v),

c’est-à-dire g · T = T pour tout g ∈ G, donc T ∈ HomC(V,W )G.

Maintenant, prenons T ∈ HomC(V,W )G arbitraire. Alors

T (g · v) = (g · T )(g · v) = g · (T (g−1gv)) = g · (T (v)) = g · T (v).

Comme le choix de g ∈ G et v ∈ V est arbitraire, on a T ∈ HomC[G](V,W ), et le résultat
est prouvé.

Exercise 7. (1) Soit ρ : G → GL(V ) une représentation irréductible de G sur C. Comme
G est abélien, pour tout g ∈ G, ρ(g) : V → V est un entrelacement, donc d’après le
lemme de Schur, ρ(g) est un opérateur scalaire. En particulier, tout sous-espace vectoriel
de V est fixé par l’action de tous les éléments de G. Comme V est irréductible, tous ces
sous-espaces fixes doivent être triviaux, donc égaux à 0 ou V . Par conséquent, V doit
être de dimension 1.
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(2) D’après le point précédent, toutes les représentations irréductibles de Z/nZ doivent être
de dimension 1. Cherchons donc des morphismes de groupes

ρ : Z/nZ → GL(C) ∼= C×.

Clairement, un tel morphisme est entièrement déterminé par un élément ρ([1]) ∈ C×

tel que ρ([1])n = 1. Ainsi, on établit une correspondance entre les représentations
irréductibles de Z/nZ et les racines n-ièmes de l’unité dans C.


