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Exercise 1. À faire vous-même.

Exercise 2. Soit g le morphisme G → F dans la suite exacte courte. Soit A ⊂ F un ensemble
de générateurs de F , c’est-à-dire F ∼= ⟨A⟩. Pour chaque aα ∈ A, soit bα ∈ G une préimage
arbitraire de aα par g (on peut toujours trouver au moins une telle préimage, car g est sur-
jective). Considérons l’application φ : A → G définie par aα 7→ bα. Comme F est libre avec
des générateurs dans A, φ induit un homomorphisme de groupes φ : F → G. Il est clair que
la composition g ◦ φ fixe tous les générateurs de F , et encore par la propriété universelle, nous
concluons que cette application doit être l’identité sur F , c’est-à-dire que g scinde.

Exercise 3. Pour prouver que F est sans torsion, nous observons que tout élément de F
peut s’écrire sous la forme αβα−1, où β est un mot réduit cycliquement, c’est-à-dire que si
β = s1 · · · sn, alors s1 ̸= s−1

n . Pour tout m > 0, nous avons

(αβα−1)m = αβmα−1,

et comme β est réduit cycliquement, aucune annulation ne peut se produire à l’intérieur de βm.
Ainsi, si αβα−1 était non trivial, alors (αβα−1)m reste non trivial pour tout m > 0, ce qui
prouve que F est sans torsion.

Maintenant, soit a ∈ F \ {1} et notons par x la dernière lettre (élément de S) de la forme
réduite de a. Comme |S| ≥ 2, nous pouvons choisir y ∈ S différent de x. Il est alors facile de
vérifier que ay ̸= ya, donc a n’appartient pas au centre de F . Par le choix arbitraire de a, nous
concluons que le centre est trivial.

Exercise 4. Considérons l’application φ : X ∪Y → FX définie par l’identité sur X et envoyant
les éléments de Y sur le mot vide. Elle induit un homomorphisme de groupes surjectif

φ : FX∪Y → FX .

Montrons que son noyau est le sous-groupe normal engendré par Y pour conclure par le premier
théorème d’isomorphisme.

Le sous-groupe normal engendré par Y est évidemment contenu dans kerφ, car φ envoie les
générateurs venant de Y sur le mot vide.

Maintenant, soit a un élément de kerφ, et écrivons a = X1Y2X2 . . . XnYn, où Xi sont des
éléments de FX et Yi sont des éléments de FY (éventuellement 1). Alors

1 = φ(a) = X1X2 . . . Xn,

et nous devons donc avoir Xn = X−1
n−1 . . . X

−1
1 . Ainsi

a = X1Y1 . . . Xn−1Yn−1(X
−1
n−1 . . . X

−1
1 )Yn = X1(Y1X2(. . .)X

−1
2 )X−1

1 Yn,
1
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ce qui est clairement un élément du sous-groupe normal engendré par Y , donc c’est terminé.

Exercise 5. (1) Puisque i2 = j2 = k2, nous avons−1 = i2, qui commute avec les générateurs
i, j et k. Ainsi −1 ∈ Z(Q8).

(2) En utilisant les relations, observez que

ij = k, jk = i, ki = j, ij = −ji, jk = −kj, ki = −ki.

En utilisant cela, tout mot en i, j et k peut être écrit comme un élément de l’ensemble
{±1, ±i, ±j, ±k}. Par conséquent, |Q8| = 8.

(3) Dans la dernière partie, nous avons montré que Q8 = {±1, ±i, ±j, ±k}. En utilisant les
identités des produits d’éléments écrites dans la dernière partie, il s’ensuit que les seuls
éléments centraux sont 1 et −1. Ainsi Z(Q8) = {−1, 1}.

(4) Si H est un sous-groupe non trivial et propre de Q8, alors il est d’ordre 2 ou 4. Puisque
l’indice d’un sous-groupe d’ordre 4 de Q8 est 2, il serait normal. Maintenant, notez que
−1 est le seul élément de Q8 d’ordre 2. Ainsi, le seul sous-groupe d’ordre 2 de Q8 est
{1,−1}, qui est le centre et donc normal.

Exercise 6. Pour cet exercice, nous utiliserons à plusieurs reprises la proposition 27 : le sous-
groupe des commutateurs [G,G] ◁G est normal dans G, et pour tout autre sous-groupe normal
H ◁ G tel que le quotient G/H soit abélien, nous avons [G,G] ◁ H.

(1) Le groupe An est simple et non abélien pour tout n ≥ 5, ce qui implique que [An, An] =
An et Aab

n = 1.

(2) Nous savons que V4◁A4 est un sous-groupe normal tel que A4/V4 est abélien (d’ordre 3).
Ainsi, [A4, A4] ◁ V4. Le sous-groupe des commutateurs ne peut pas être trivial puisque
A4 n’est pas abélien. Il ne peut pas être d’ordre 2 puisque A4 n’a pas de sous-groupe
normal d’ordre 2 (car le centre de A4 n’a pas d’élément d’ordre 2). Donc [A4, A4] = V4

et Aab
4 = A4/V4

∼= Z/3Z.
(3) Nous savons que An ◁ Sn avec un quotient abélien. Comme An est simple et Sn n’est

pas abélien, nous devons avoir [Sn, Sn] = An. Il s’ensuit que Sab
n = Sn/An

∼= Z/2Z.
(4) Nous avons vu en cours que F ab

S = FS/[FS , FS ] = ZS = Z⊕ Z.

(5) À partir de la première relation, nous observons que a2 = b−3. En substituant dans la
seconde relation, il en résulte que 1 = a4b5 = (b−3)2b5 = b−6+5 = b−1, ce qui signifie
que b = 1. Cela implique que le groupe admet la présentation ⟨a|a2⟩, qui est isomorphe
à Z/2Z. C’est sa propre abélianisation.

Exercise 7. Nous écrivons G pour le groupe défini par les présentations de chaque point.

(1) Puisque les deux générateurs sont d’ordre 2, la dernière relation implique que

ab = (ab)−1 = b−1a−1 = ba.

Cela montre que G est abélien avec deux générateurs d’ordre 2, c’est-à-dire

G ∼= Z/2Z× Z/2Z.



THÉORIE DES GROUPES 2024-25, SOLUTIONS 12 3

(2) Soit S = {a, b} et soit f : FS → A4 l’unique homomorphisme de groupes tel que
f(a) = (123) et f(b) = (234), donné par le lemme 16. Comme A4 est engendré par
ces deux 3-cycles (vous pouvez le vérifier à la main), nous avons FS/ ker(f) ∼= A4. Soit
N ◁ FS le sous-groupe normal engendré par R = {a3, b3, (ab)2}. Comme ces relations
sont satisfaites par leur image par f dans A4, nous obtenons N ⊂ ker(f). Par définition,
G = FS/N , donc par le théorème de correspondance,

G/π(ker(f)) ∼= (FS/N)/ ker(f)/N) ∼= FS/ ker(f) ∼= A4.

Cela signifie que A4 est un quotient de G. Si nous montrons que G contient au plus 23
éléments, alors |G| = 12 et G = A4. Nous proposons deux solutions pour compter le
nombre d’éléments dans G.

(a) En utilisant les relations, observez que a′ := ab et b′ := ba satisfont les relations
a′2 = b′2 = (a′b′)2 = 1. Par le point précédent, ces deux éléments engendrent une
copie de Z/2Z× Z/2Z dans G. En utilisant ab = b2a2, nous trouvons que

aa′a−1 = aa′a2 = aaba2 = ab2a2a2 = a′b′ ∈ ⟨a′, b′⟩ ≤ G

ba′b−1 = bab3 = b′ ∈ ⟨a′, b′⟩ ≤ G

ab′a−1 = a′ ∈ ⟨a′, b′⟩ ≤ G

bb′b−1 = b′a′ ∈ ⟨a′, b′⟩ ≤ G

Cela montre que ⟨a′, b′⟩ ◁G est un sous-groupe normal. Considérons le sous-groupe
Z/3Z ∼= ⟨a⟩ ≤ G. Il s’ensuit que

(i) ⟨a′, b′⟩ ◁ G
(ii) ⟨a⟩ ∩ ⟨a′, b′⟩ = 1 ;

(iii) ⟨a⟩ · ⟨a′, b′⟩ = G, car b = b′a2, donc ce produit de sous-groupes contient les
générateurs de G ;

Ainsi, G est un produit semi-direct interne de ⟨a′, b′⟩ avec ⟨a⟩, et donc G est d’ordre
|⟨a′, b′⟩| · |⟨a⟩| = 4 · 3 = 12.

(b) En utilisant les deux premières relations, nous observons que les éléments de G sont
des mots alternant entre a ou a2 et b ou b2. Comme (ab)2 = 1, nous en déduisons
que bab = a2 et aba = b2. Nous comptons le nombre de mots commençant par a
de la forme ak1bk2ak3bk4 . . . akr en fonction de leur longueur r. Il existe deux mots
différents de longueur 1. Il existe au plus quatre mots différents de longueur 2,
de la forme ak1bk2 . Par les relations ci-dessus, les châınes contenant uniquement
des a et des b (d’exposant 1) peuvent être réduites à des mots de longueur 1 ou
2. Ainsi, les châınes de longueur 3 doivent contenir une puissance de 2 au milieu.
Comme b2a2 = ab, les châınes de longueur 3 sont de la forme ab2a ou a2b2a. Par
un raisonnement similaire, chaque châıne de longueur 4 peut être réduite à une
longueur plus courte. Par conséquent, il existe au plus 10 mots commençant par
a. Un argument similaire montre la même chose pour les mots commençant par b.
Nous concluons que le nombre d’éléments dans G est borné par 23, comme souhaité.

(3) A5 est un groupe simple d’ordre 60, donc il n’a pas de groupe d’ordre 30. Soit σ = (12345)
et τ = (12)(34). Si nous montrons que ⟨σ, τ⟩ contient au moins 16 éléments, cela prouvera
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que A5 = ⟨σ, τ⟩. Nous avons
τστ−1 = (21435)

στ = (135)

τσ = (245)

σ2τ = (14523).

Les trois 5-cycles engendrent des sous-groupes d’ordre 5 qui s’intersectent trivialement,
donc ils engendrent 4·3+1 = 13 éléments distincts de A5. Les deux 3-cycles engendrent 4
éléments distincts supplémentaires, et donc ⟨σ, τ⟩ contient au moins 17 éléments, comme
souhaité.

(4) Supposons que FS soit résoluble. Choisissons deux générateurs distincts a, b ∈ S et soit
R = S\{a, b}. Nous obtenons que FS/R = ⟨S|R⟩ = ⟨a, b|⟩ = F{a,b} est un groupe libre
engendré par deux éléments (exercice 4). Nous avons observé au point précédent que
A5 peut être engendré par deux éléments, disons α, β ∈ A5. La propriété universelle des
groupes libres nous dit qu’il existe un unique homomorphisme de groupes f : F{a,b} → A5

tel que f(a) = α et f(b) = β. Comme ces éléments engendrent A5, nous obtenons que
f est surjectif et donc A5

∼= F{a,b}/ ker(f). Comme les quotients de groupes résolubles
sont résolubles, cela impliquerait que A5 est résoluble. C’est une contradiction car A5

est simple.


