
GROUP THEORY 2024 - 25, SOLUTION SHEET 12

Exercise 1. To do yourself. Ask the assistant if something is unclear.

Exercise 2. Denote by g the morphism G → F in the short exact sequence. Let A ⊂ F be a
set of generators of F , that is F ∼= ⟨A⟩. For each aα ∈ A let bα ∈ G be an arbitrary preimage
of aα by g (we can always find at least one such preimage, because g is surjective). Consider
the set map φ : A → G given by aα 7→ bα. Because F is free with generators in A, φ induces a
group homomorphism φ : F → G. Clearly, the composition g ◦ φ fixes all generators of F , and
again by the universal property we conclude this map must be the identity on F , i.e. g splits.

Exercise 3. To prove that F is torsion free we observe that any element of F can be written
in the form αβα−1 where β is a cyclically reduced word, i.e. if β = s1 · · · sn then s1 ̸= s−1

n . For
any m > 0 we have

(αβα−1)m = αβmα−1

and as β is cyclically reduced no cancellation can happen inside of βm. Thus if αβα−1 was
non-trivial also (αβα−1)m stays non-trivial for any m > 0 which proves that F is torsion free.

Now, let a ∈ F \ {1} and denote the last letter (element of S) of the reduced word form of a
by x. As |S| ≥ 2, we can pick y ∈ S different than x. Then it is straightforward to check that
ay ̸= ya, so a is not in the center of F . By arbitrary choice of a we conclude that the center is
trivial.

Exercise 4. Consider the set map φ : X ∪ Y → FX given by the identity on X and mapping
elements of Y to the empty word. It induces a surjective group homomorphism φ : FX∪Y → FX .
Let us prove that its kernel is the normal subgroup generated by Y to conclude by the first
isomorphism theorem.

The normal subgroup generated by Y is obviously contained in kerφ as φ carries the gener-
ators coming from Y to the empty word.

Now, let a be in the kernel of φ and write a = X1Y2X2 . . . XnYn where Xi are elements of
FX and Yi are elements of FY (may be 1). Then 1 = φ(a) = X1X2 . . . Xn and hence we must
have Xn = X−1

n−1 . . . X
−1
1 . Then

a = X1Y1 . . . Xn−1Yn−1(X
−1
n−1 . . . X

−1
1 )Yn = X1(Y1X2(. . .)X

−1
2 )X−1

1 Yn

which is clearly an element of the normal subgroup generated by Y , so we are done.

Exercise 5. (1) Since i2 = j2 = k2, we have that −1 = i2 commutes with the generators
i, j and k. Hence −1 ∈ Z(Q8).
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(2) Using the relations observe that ij = k, jk = i, ki = j, ij = −ji, jk = −kj, ki =
−ki. Using this any word in i, j and k can be written as an element of the set
{±1, ±i, ±j, ±k}. Therefore |Q8| = 8.

(3) In the last part we showed that Q8 = {±1, ±i, ±j, ±k}. Using the identities of products
of elements written in the last part it follows that the only central elements are 1 and
−1. Hence Z(Q8) = {−1, 1}.

(4) If H is a non-trivial and proper subgroup of Q8 then it has order 2 or 4. Since the index
of an order 4 subgroup of Q8 is 2 it would be normal. Now note that −1 is the only
element of Q8 of order 2. So the only order 2 subgroup of Q8 is {1,−1}, which is the
centre and hence normal.

Exercise 6. For this exercise, we will use repeatedly proposition 27: the commutator subgroup
[G,G]◁G is normal in G, and for any other normal subgroup H ◁G such that the quotient G/H
is abelian, we have [G,G] ◁ H.

(1) the group An is simple and non abelian for all n ≥ 5, which implies that [An, An] = An

and Aab
n = 1.

(2) We know that V4 ◁ A4 is a normal subgroup such that A4/V4 is abelian (of order 3).
Hence [A4, A4] ◁ V4. The commutator subgroup can’t be trivial since A4 is not abelian.
It cannot be of order 2 since A4 doesn’t have a normal subgroup of order 2 (because the
centre of A4 has no element of order 2). Hence [A4, A4] = V4 and Aab

4 = A4/V4
∼= Z/3Z.

(3) We know that An ◁ Sn with abelian quotient. Since An is simple and Sn is not abelian,
we must have that [Sn, Sn] = An. It follows that S

ab
n = Sn/An

∼= Z/2Z.
(4) We have seen in the lectures that F ab

S = FS/[FS , FS ] = ZS = Z⊕ Z.
(5) From the first relation we observe that a2 = b−3, substituting in the second relation it

implies that 1 = a4b5 = (b−3)2b5 = b−6+5 = b−1, which means that b = 1. It implies
that the group admits the presentation ⟨a|a2⟩ which is isomorphic to Z/2Z. It is its own
abelianization.

Exercise 7. We write G for the group given by the presentations of each point.

(1) Since the two generators have order 2, the last relation implies that ab = (ab)−1 =
b−1a−1 = ba. This shows that G is abelian with two generators of order 2, i.e. G ∼=
Z/2Z× Z/2Z.

(2) Let S = {a, b} and let f : FS → A4 be the unique group homomorphism such that
f(a) = (123) and f(b) = (234), given by lemma 16. Since A4 is generated by these two
3-cycles (you can verify this by hand), we have that FS/ ker(f) ∼= A4. Let N ◁FS be the
normal subgroup generated by R = {a3, b3, (ab)2}. Since those relations are satisfied by
their image by f in A4, we obtain that N ⊂ ker(f). Since by definition G = FS/N ,
we obtain by the correspondence theorem that G/π(ker(f)) ∼= (FS/N)/ ker(f)/N) ∼=
FS/ ker(f) ∼= A4. This means that A4 is a quotient of G. If we show that G contains at
most 23 elements, we would have that |G| = 12 and G = A4. We propose two solutions
to count the number of elements in G.
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(a) Using the relations, observe that a′ := ab and b′ = ba satisfy the relations a′2 =
b′2 = (a′b′)2 = 1. By the previous point, those two elements generate a copy of
Z/2Z× Z/2Z in G. Using that ab = b2a2, we find that

aa′a−1 = aa′a2 = aaba2 = ab2a2a2 = a′b′ ∈ ⟨a′, b′⟩ ≤ G

ba′b−1 = bab3 = b′ ∈ ⟨a′, b′⟩ ≤ G

ab′a−1 = a′ ∈ ⟨a′, b′⟩ ≤ G

bb′b−1 = b′a′ ∈ ⟨a′, b′⟩ ≤ G

This shows that ⟨a′, b′⟩ ◁ G is a normal subgroup. Consider the subgroup Z/3Z ∼=
⟨a⟩ ≤ G. It follows that

(i) ⟨a′, b′⟩ ◁ G
(ii) ⟨a⟩ ∩ ⟨a′, b′⟩ = 1;
(iii) ⟨a⟩ · ⟨a′, b′⟩ = G since b = b′a2 so this product of subgroups contain the

generators of G;
Hence G is an internal semi direct product of ⟨a′, b′⟩ with ⟨a⟩, and so G is of order
|⟨a′, b′⟩| · |⟨a⟩| = 4 · 3 = 12.

(b) Using the first two relations, we observe that elements ofG are words that alternates
between a or a2 with b or b2. Since (ab)2 = 1, we infer that bab = a2 and aba = b2.
We count the number of words starting with a of the form ak1bk2ak3bk4 . . . akr by
length r. There are two different words of length 1. There are at most four different
words of length 2: of the form ak1bk2 . By the above relations, strings containing
only a’s and b’s (of power 1) can be reduced to words of length 1 or 2. So strings of
length 3 must contain a power of 2 in the middle. Since b2a2 = ab, strings of length
3 are of the form ab2a or a2b2a. By a similar argument, every string of length 4 can
be reduced to a smaller length. Hence there are at most 10 words starting with a.
A similar argument shows the same for words starting by b. We conclude that the
number of elements in G is bounded by 23, as desired.

(3) A5 is a simple group of order 60, hence it has no group of order 30. Let σ = (12345)
and τ = (12)(34). If we show that ⟨σ, τ⟩ has at least 16 elements, it would show that
A5 = ⟨σ, τ⟩. We have that

τστ−1 = (21435)

στ = (135)

τσ = (245)

σ2τ = (14523)

The three 5-cycles generates subgroups of order 5 which intersect trivially, hence they
generate 4 · 3 + 1 = 13 distinct elements of A5. The two 3-cycles generates 4 more
distinct elements, and so ⟨σ, τ⟩ has at least 17 elements, as desired.

(4) Suppose that FS is solvable. Choose two distinct generators a, b ∈ S and let R =
S\{a, b}. We obtain that FS/R = ⟨S|R⟩ = ⟨a, b|⟩ = F{a,b} is a free group generated by
two elements (exercise 4). We observed in the previous point that A5 can be generated by
two elements, say α, β ∈ A5. The universal property of free groups tells us that there is
a unique group homomorphism f : F{a,b} → A5 such that f(a) = α and f(b) = β. Since
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those elements generates A5, we obtain that f is surjective and thus A5
∼= F{a,b}/ ker(f).

Since quotients of solvable groups are solvable, this would imply that A5 is solvable. This
is a contradiction since A5 is simple.


