
THÉORIE DES GROUPES 2024 - 25, SOLUTIONS 11

Exercise 1. À faire vous-même.

Exercise 2. Soit 1 = G0 ◁ G1 ◁ . . . ◁ Gk−1 ◁ Gk = G une série centrale pour G. Supposons
G1 ̸= 1, sinon, retirez le groupe de la châıne jusqu’à ce que cette condition soit satisfaite. Cette
châıne étant une série centrale implique que

1 ̸= G1 = G1/G0 ≤ Z(G/G0) = Z(G).

En particulier, G a un centre non trivial.

Exercise 3. Sous l’hypothèse que H est normal, nous avons que [G,H] est un sous-groupe
normal de G. Par minimalité, il doit être soit égal à 1, soit à H lui-même. S’il est égal à 1, alors
le résultat est prouvé. Sinon, nous pouvons montrer par induction que

[G, [G, . . . [G,H] . . .]] = H.

Cependant, ce groupe de commutateurs est toujours contenu dans un certain G{i}, et doit donc
finir par être égal à 1, ce qui contredit l’hypothèse.

Exercise 4. (1) Pour n ≥ 3, le centre Z(Sn) = 1 est trivial, donc Sn ne peut pas être
nilpotent d’après le premier exercice. S1 et S2 sont abéliens, donc nilpotents.

(2) Commençons par quelques observations préliminaires. Tout d’abord, rappelez-vous que
le centre du groupe diédral est donné par

Z(D2n) =

{
1 si n est impair ;

⟨rn/2⟩ ∼= Z/2Z si n = 2k est pair ;

où r est la rotation d’ordre n. Vous avez vu cela dans le cours Structures algébriques,
vous êtes invités à le démontrer à nouveau si vous ne vous en souvenez pas. Par le
premier exercice, nous savons que si le centre est trivial, alors le groupe ne peut pas être
nilpotent. Ensuite, lorsque n = 2k est pair, nous observons que

D2·(2k)/Z(D2·(2k)) ∼= D2k.

Pour le prouver, souvenez-vous que

(1) D2n
∼= Z/nZ ⋊φ Z/2Z

où l’action est donnée par b · a = ba pour tout a ∈ Z/nZ et b ∈ {−1, 1} = Z/2Z. Vous
pouvez facilement vérifier à la main que

ψ : D2·(2k) = Z/2kZ ⋊φ Z/2Z → Z/kZ ⋊φ Z/2Z = D2k

(a, b) 7→ (2a, b)
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définit un homomorphisme de groupes surjectif. Nous remarquons que le noyau de cette
application est ker(ψ) = ⟨(k, 0)⟩ ×φ {1}, ce qui correspond à ⟨rk⟩ = Z(D2n) via l’iso-
morphisme (1). Par le premier théorème d’isomorphisme, nous obtenons que

D2n/Z(D2n) ∼= Dn

comme désiré.

Nous sommes maintenant prêts à prouver que D2n est nilpotent si et seulement si
n = 2k pour un certain k.

( =⇒ ) : Supposons que D2n est nilpotent. Par ce qui précède, nous savons qu’il a un centre
non trivial, ce qui implique que n = 2k1 est pair. Comme le quotient d’un groupe
nilpotent est nilpotent, son quotient D2k1 = D2n/Z(D2n) est également nilpotent.
Nous pouvons répéter le même argument pour obtenir que k1 = 2k2 doit aussi être
pair, de sorte que n = 22k2. Ce processus doit se terminer après un nombre fini
d’étapes, ce qui montre que n = 2k pour un entier k.

( ⇐= ) : Nous prouvons par induction que D2·2k est nilpotent. Pour k = 0, le résultat est
clair. Supposons que D2·2k−1 est nilpotent. Par ce qui précède, le centre est non
trivial et nous avons une suite exacte courte

1 → Z(D2·2k) → D2·2k → D2·2k−1 → 1.

Nous concluons en utilisant l’hypothèse d’induction et le Théorème 38.

Exercise 5. Si G est nilpotent, alors par la propriété des normalisateurs, nous déduisons di-
rectement que chaque sous-groupe maximal de G est normal dans G.

Réciproquement, soit P un p-sous-groupe de Sylow de G. Si P n’est pas normal dans G, soit
M un sous-groupe maximal contenant son normalisateur (remarquez que nous pouvons choisir
un tel sous-groupe car G est fini). Par hypothèse, M doit être normal. Par l’exercice 7 de la
série 9, nous avons NG(P )M = G, ce qui contredit le fait que NG(P ) ⊂ M , car alors nous
aurions NG(P )M ⊂M ̸= G. Nous en déduisons que tous les p-sous-groupes de Sylow de G sont
normaux. Par le cours 11 ceci implique que G est nilpotent.

Exercise 6. Soit m1, . . . ,mr les sous-groupes maximaux de G (nombre fini, car G est fini).
Remarquez que nous avons une action de G sur l’ensemble {m1, . . . ,mr} donnée par conjugaison
(vérifiez qu’il s’agit bien d’une action). Ainsi, si x ∈ J =

⋂r
i=1mi, alors pour tout a ∈ G,

axa−1 ∈
⋂r

i=1 amia
−1. La deuxième intersection est égale à

⋂r
i=1mi par l’observation ci-dessus

sur l’action, donc nous obtenons axa−1 ∈
⋂r

i=1mi = J . Par le choix arbitraire de a ∈ G, nous
concluons que J est normal dans G.

Maintenant, soit P un p-sous-groupe de Sylow de J . Par le même exercice de la série 9 que ci-
dessus, NG(P )J = G. Si NG(P ) ̸= G, alors NG(P )J est contenu dans un sous-groupe maximal
de G, donc ce qui précède ne peut pas tenir. Ainsi, NG(P ) = G, ce qui signifie que P est normal
dans G et donc normal dans J . Par le cours 11 ceci implique que J est nilpotent.


