
GROUP THEORY 2024 - 25, SOLUTION SHEET 11

Exercise 1. To do yourself. Ask the assistant if something is unclear.

Exercise 2. Let 1 = G0 ◁ G1 ◁ . . . ◁ Gk−1 ◁ Gk = G be a central series for G. Suppose G1 ̸= 1,
otherwise remove it from the chain until this condition is satisfied. This chain being a central
series implies that

1 ̸= G1 = G1/G0 ≤ Z(G/G0) = Z(G).

In particular G has a non trivial center.

Exercise 3. By the assumption that H is normal, we have that [G,H] is a normal subgroup
of G. By minimality, it must be either 1 or H itself. If it is 1 then we are done. If not, we can
inductively show that [G, [G, . . . [G,H] . . .]] = H. However, this commutator group is always
inside of some Gi (term of a central series of G), hence must eventually be equal to 1, which
contradicts the assumption.

Exercise 4. (1) For n ≥ 3 the center Z(Sn) = 1 is trivial, hence Sn can’t be nilpotent by
the first exercise. S1 and S2 are abelian, hence nilpotent.

(2) We start by some preliminaries observations. First recall that the center of the dihedral
group is given by

Z(D2n) =

{
1 if n is odd;

⟨rn/2⟩ ∼= Z/2Z if n = 2k is even;

where r is the rotation of order n. You have seen this in algebraic structures, you are
invited to prove it again if you don’t recall it. By the first exercise we know that if the
center is trivial, the the group can’t be nilpotent. Secondly, when n = 2k is even, we
observe that D2·(2k)/Z(D2·(2k)) ∼= D2k. To prove it, remember that

(1) D2n
∼= Z/nZ ⋊φ Z/2Z

where the action is given by b · a = ba for all a ∈ Z/nZ and b ∈ {−1, 1} = Z/2Z. You
can easily check by hand that

ψ : D2·(2k) = Z/2kZ ⋊φ Z/2Z → Z/kZ ⋊φ Z/2Z = D2k

(a, b) 7→ (a, b)

defines a surjective group homomorphism. We notice that the kernel of this map is
ker(ψ) = ⟨(k, 0)⟩×φ {1}, which corresponds to ⟨rk⟩ = Z(D2n) through the isomorphism
(1). By the first isomorphism theorem, we get that D2n/Z(D2n) ∼= Dn as desired.

We are now ready to prove that D2n is nilpotent if and only if n = 2k for some k.
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( =⇒ ): Suppose that D2n is nilpotent. By the above we know that it has a non trivial
center, which implies that n = 2k1 is even. Since the quotient of a nilpotent group
is nilpotent, its quotient D2k1 = D2n/Z(D2n) is nilpotent as well. We can repeat
the same argument to obtain that k1 = 2k2 must be even as well, so that n = 22k2.
This process must end after a finite number of steps, which shows that n = 2k for
some integer k.

(⇐): We prove by induction thatD2·2k is nilpotent. For k = 0 the result is clear. Suppose
that D2·2k−1 is nilpotent. By the above the center is non trivial and we have a short
exact sequence

1 → Z(D2·2k) → D2·2k → D2·2k−1 → 1.

We conclude using the induction hypothesis and Theorem 38.

Exercise 5. If G is nilpotent, then by the normalizer property we deduce directly that each
maximal subgroup of G is normal in G.

Conversely, let P be a Sylow p-subgroup of G. If P is not normal in G, let M be a maximal
subgroup containing its normalizer (observe that we can choose such a subgroup because G is
finite). By hypothesis, M must be normal. By exercise 7 of series 9, we have NG(P )M = G,
which contradicts the fact that NG(P ) ⊂M , because then we would have NG(P )M ⊂M ̸= G.
We deduce that all Sylow subgroups of G are normal. By theorem 11 of the lecture notes and
exercise 3 of series 9, we conclude that G is nilpotent.

Exercise 6. Letm1, . . . ,mr be the maximal subgroups of G (finite number, because G is finite).
Observe that we have an action of G on the set {m1, . . . ,mr} given by conjugation (check that
this is indeed an action). Hence, if x ∈ J =

⋂r
i=1mi, then for all a ∈ G, axa−1 ∈

⋂r
i=1 amia

−1.
The second intersection is equal to

⋂r
i=1mi by the above observation on the action, so we get

axa−1 ∈
⋂r

i=1mi = J . By arbitrary choice of a ∈ G, we conclude that J is normal in G.
Now, let P be a Sylow p-subgroup of J . By the same exercise of series 9 as above, NG(P )J =

G. If NG(P ) ̸= G, then NG(P )J is contained in a maximal subgroup of G, so the above said
cannot hold. Hence, NG(P ) = G, meaning that P is normal in G and, in particular, normal in
J . By the same reasoning as in the above exercise, we conclude that J is nilpotent.


