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Exercise 1. À faire vous-même.

Exercise 2. Soit G/H l’ensemble des classes à gauche de H dans G. Alors |G/H| = p et il
existe donc un homomorphisme induit φ : G→ Sp par l’action de G sur G/H. Soit K le noyau
de φ, et considérons les deux lemmes suivants.

Lemme A : La cardinalité de G/K est p.
Lemme B : Nous avons une inclusion de sous-groupes K ⊆ H.

En supposant les lemmes, puisque l’indice de K et de H dans G est p et que K ⊆ H, nous
pouvons conclure que H = K. Le fait que K soit un noyau d’un homomorphisme implique que
H = K est un sous-groupe normal. Nous laissons la preuve du Lemme B au lecteur et prouvons
le Lemme A.

Preuve du Lemme A : Soit q un facteur premier de |G/K|. Puisque p est supposé être
le plus petit premier divisant |G| et que |G/K| | |G|, nous avons q ≥ p. Par le premier théorème
d’isomorphisme appliqué à φ, nous obtenons que G/K est isomorphe à un sous-groupe de Sp.
Par conséquent q | |G/K| | p! et donc q ≤ p. Ainsi, nous obtenons q = p. Donc |G/K| = pn

mais |G/K| | p! implique également que n = 1. Par conséquent |G/K| = p.

Exercise 3. (1) Par un exercice d’une série précédente, un p-groupe d’ordre n possède des
sous-groupes normaux d’ordre pk pour tout 1 ≤ k ≤ n, ce qui prouve l’énoncé.

(2) Supposons sans perte de généralité p > q. Par les théorèmes de Sylow, le nombre de
p-sous-groupes de Sylow du groupe divise q et a un reste de 1 modulo p. Comme p et
q sont des premiers distincts, il doit être égal à 1, et par un exercice de la série 9, ce
sous-groupe sera normal.

(3) Si q < p, dans ce cas, il existe un unique p-sous-groupe de Sylow de G, et il est donc
normal dans G. Supposons maintenant que p < q. Il ne peut pas être le cas que p ait
un reste 1 modulo q, donc le nombre de q-sous-groupes de Sylow, que nous notons nq,
doit vérifier nq = 1 ou nq = p2. Si nq = 1, alors le groupe G n’est pas simple. Supposons
donc nq = p2. Puisqu’un q-sous-groupe de Sylow a un ordre q et que deux q-sous-
groupes de Sylow distincts s’intersectent trivialement, G a p2(q − 1) éléments d’ordre
q. Par conséquent, le p-sous-groupe de Sylow contient tous les p2 éléments restants de
G. Dans ce cas, nous concluons que le p-sous-groupe de Sylow est unique, donc normal
dans G.

(4) Sans perte de généralité, supposons que p < q < r. Si le nombre ns de s-sous-groupes de
Sylow est 1 pour s = p, q ou r, alors le s-sous-groupe de Sylow est normal. Supposons
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donc maintenant que np, nq et nr sont tous strictement supérieurs à 1. En utilisant
les théorèmes de Sylow, nous en déduisons que np ≥ 1, nq ≥ r et nr ≥ pq. Puisque,
pour s = p, q, r, les s-sous-groupes de Sylow sont en intersection triviale (comme dans
le point précédent), nous pouvons compter les éléments de ces s-sous-groupes de Sylow
(ces éléments sont d’ordre s) et constater que

|G| ≥ np(p− 1) + nq(q − 1) + nr(r − 1)

≥ q(p− 1) + r(q − 1) + pq(r − 1)

= qp− q + rq − r + pqr − pq

= pqr + r(q − 1)− q

≥ |G|+ q(q − 2)

> |G|,

une contradiction.

Exercise 4. Remarquons que tout entier positif m inférieur à 60 peut s’écrire sous l’une des
formes suivantes :

(1) pn pour un premier p et n ≥ 0,

(2) paqb pour des premiers distincts p, q et a > 0, b > 0,

(3) pqr pour des premiers distincts p, q, r.

Soit G un groupe non abélien d’ordre m tel que m < 60. Si m est de la forme pn, pqr, alors G
n’est pas simple par l’exercice 3.

Si m est de la forme paqb, alors G est résoluble par le théorème de Burnside. Mais alors,
la résolubilité de G implique que H := [G,G] est un sous-groupe normal de G avec G ̸= H.
Comme G n’est pas abélien, nous avons également H non trivial. Ainsi, G n’est pas simple.

Exercise 5. D’après les théorèmes de Sylow, le nombre de 2-sous-groupes de Sylow doit être
soit 1, soit 3. Dans le premier cas, ce sous-groupe est normal et le résultat est établi. Dans
le second cas, il existe un homomorphisme de groupes G → S3 donné par l’action de G sur
l’ensemble des 2-sous-groupes de Sylow. Si G est simple, cet homomorphisme doit être injectif,
ce qui implique que G a au plus 6 éléments, ce qui contredit l’hypothèse n ≥ 2.

Exercise 6. (1) Soit σ ∈ Aut(K) tel que σφ1(L)σ
−1 = φ2(L). Soit x ∈ L un générateur

du groupe cyclique L. Alors, il existe a ∈ N tel que σ ◦ φ1(x) ◦ σ−1 = φ2(x
a) = φ2(x)

a.
Maintenant, pour tout l ∈ L, il existe b ∈ N tel que l = xb, ce qui implique que

σ ◦ φ1(l) ◦ σ−1 = σ ◦ φ1(x
b) ◦ σ−1

= (σ ◦ φ1(x) ◦ σ−1)b

= (φ2(x)
a)b

= φ2(x
b)a

= φ2(l)
a(1)
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comme suggéré par l’indice. Nous définissons maintenant

ψ : K ⋊φ1 L→ K ⋊φ2 L

par ψ(k, l) = (σ(k), la). Nous laissons au lecteur le soin de vérifier que ψ est un homo-
morphisme de groupes. Pour construire un inverse ϕ : K⋊φ2 L→ K⋊φ1 L de ψ, il suffit
d’inverser les rôles de φ1 et φ2 ci-dessus. Pour ce faire, nous manipulons l’équation (1)
pour obtenir que

σ−1 ◦ φ2(l) ◦ σ = φ1(l)
b

pour b = −a + 1. Par conséquent, nous savons que ϕ : (k, l) 7→ (σ−1(k), lb) est un
homomorphisme de groupes. Il est maintenant facile de vérifier que ϕ et ψ sont des
inverses l’un de l’autre.

(2) Soient φ1, φ2 : L = Z/pZ → Aut(Z/p2Z) des homomorphismes de groupes non triviaux.
D’après l’indication, nous savons que Aut(Z/p2Z) ∼= Z/mZ pour un certain entier m.
Comme les deux homomorphismes sont non triviaux, leur noyau doit être trivial et φ1

et φ2 sont donc injectifs. Il s’ensuit que φ1(L) et φ2(L) sont des sous-groupes d’ordre p
dans Z/mZ. Mais les groupes cycliques ont des sous-groupes uniques pour chaque ordre,
donc φ1(L) = φ2(L). En particulier, ils sont conjugués, et nous concluons en utilisant
la première partie de l’exercice.

(3) Soient φ1, φ2 : L = Z/pZ → Aut(Z/pZ × Z/pZ = K) des homomorphismes de groupes
non triviaux. Pour identifier le codomaine, nous remarquons que tout automorphisme
f : K → K est un automorphisme linéaire d’espace vectoriel sur L. En effet, pour
α ∈ L, nous avons f(α · (a, b)) = α · f(a, b). Il s’ensuit que les automorphismes L sont
en bijection avec les matrices inversibles à coefficients dans L, et donc

|Aut(K)| = |GL2(Z/pZ)| = (p2 − 1)(p2 − p) = p(p3 − p2 − p− 1) = p · r,
où r ∈ N est un nombre pair. Il s’ensuit que les p-sous-groupes de Sylow sont d’ordre p,
et donc tous les sous-groupes d’ordre p sont conjugués (d’après le théorème de Sylow).
Comme au point précédent, les groupes φ1(L) et φ2(L) sont des sous-groupes de Aut(K)
d’ordre p, et donc sont conjugués. Nous concluons par le premier point.

Exercise 7. (1) Par le théorème de classification des groupes abéliens de type fini, nous
savons que G est isomorphe à l’un des groupes abéliens suivants

Z/p3Z, Z/p2Z× Z/pZ, Z/pZ× Z/pZ× Z/pZ.

(2) Soit x ∈ G un élément d’ordre p2 et K son sous-groupe engendré

K = ⟨x⟩ ∼= Z/p2Z.
Puisque K est d’indice p dans G, nous savons que K est normal dans G par l’exercice 2,
et donc G/K ∼= Z/pZ. Un générateur [α] de G/K peut être représenté par tout élément
α ∈ G\K, qui est d’ordre p ou p2 dans G. Si α est d’ordre p, il existe une suite exacte
scindée

1 → Z/p2Z → G→ Z/pZ → 1

où s(1) = α est une section. Si chaque α ∈ G\K est d’ordre p2, on obtient une contra-
diction. Il s’ensuit que G est un produit semi-direct, qui est non trivial puisque G n’est
pas abélien. La partie concernant l’unicité de l’énoncé découle de l’exercice précédent.



4 THÉORIE DES GROUPES 2024 - 25, SOLUTIONS 10

(3) Par l’exercice 5 de la semaine dernière, il existe un sous-groupe K ≤ G d’ordre p2.
Comme G n’a pas d’élément d’ordre p2, nous savons par l’exercice 2 de la feuille 4 que
L ∼= Z/pZ×Z/pZ. Comme dans le point précédent, K est normal dans G et nous avons
une suite exacte

1 → Z/pZ× Z/pZ → G→ Z/pZ → 1.

Maintenant, si [α] ∈ Z/pZ = G/K est un générateur représenté par α ∈ G, nous savons
que α est d’ordre p dans G puisqu’il n’y a pas d’élément d’ordre p2. Ainsi, s : G/K → G
défini par s([α]) = α est une section. Il s’ensuit que G ∼= (Z/pZ × Z/pZ) ⋊ Z/pZ, et
ce produit semi-direct est uniquement déterminé par l’exercice 6.3 puisque G n’est pas
abélien.

(4) En combinant les points précédents, nous savons que tout groupe G d’ordre p3 est
isomorphe à l’un des groupes suivants

Z/p3Z, Z/p2Z× Z/pZ, Z/pZ× Z/pZ× Z/pZ,
Z/p2Z ⋊ Z/pZ, (Z/pZ× Z/pZ)⋊ Z/pZ

où les produits semi-directs sont non triviaux, donc uniquement déterminés par l’exercice
précédent.

(5) Nous laissons au lecteur la vérification que G est un groupe d’ordre p3. Nous notons que(
p+ 1 1
0 1

)
et

(
1 1
0 1

)
ne commutent pas. De plus, la seconde matrice est d’ordre p2, ce qui prouve l’assertion
par le deuxième point de cet exercice.

(6) Nous laissons au lecteur la vérification que G est un groupe non abélien d’ordre p3.
Nous notons que tout A ∈ G peut s’écrire sous la forme A = I3 + J où J est nilpotent
(J3 = 0). Par le théorème du coefficient binomial, on obtient

Ap = I3 +

(
p
1

)
J +

(
p
2

)
J2 = I3,

ce qui montre que tout élément de G est d’ordre p. Nous concluons par le troisième
point de cet exercice.


