THEORIE DES GROUPES 2024 - 25, SOLUTIONS 10

Exercise 1. A faire vous-méme.

Exercise 2. Soit G/H l’ensemble des classes & gauche de H dans G. Alors |G/H| = p et il
existe donc un homomorphisme induit ¢ : G — S, par l'action de G sur G/H. Soit K le noyau
de ¢, et considérons les deux lemmes suivants.

Lemme A : La cardinalité de G/K est p.
Lemme B : Nous avons une inclusion de sous-groupes K C H.

En supposant les lemmes, puisque l'indice de K et de H dans G est p et que K C H, nous
pouvons conclure que H = K. Le fait que K soit un noyau d’un homomorphisme implique que
H = K est un sous-groupe normal. Nous laissons la preuve du Lemme B au lecteur et prouvons
le Lemme A.

Preuve du Lemme A : Soit ¢ un facteur premier de |G/K|. Puisque p est supposé étre
le plus petit premier divisant |G| et que |G/K]| | |G|, nous avons ¢ > p. Par le premier théoréeme
d’isomorphisme appliqué a ¢, nous obtenons que G/ K est isomorphe a un sous-groupe de S,.
Par conséquent ¢ | |G/K| | p! et donc ¢ < p. Ainsi, nous obtenons ¢ = p. Donc |G/K| = p"
mais |G/K]| | p! implique également que n = 1. Par conséquent |G/K| = p.

Exercise 3. (1) Par un exercice d’une série précédente, un p-groupe d’ordre n possede des
sous-groupes normaux d’ordre pF pour tout 1 < k < n, ce qui prouve I’énoncé.

(2) Supposons sans perte de généralité p > q. Par les théoremes de Sylow, le nombre de
p-sous-groupes de Sylow du groupe divise ¢ et a un reste de 1 modulo p. Comme p et
q sont des premiers distincts, il doit étre égal a 1, et par un exercice de la série 9, ce
sous-groupe sera normal.

(3) Si ¢ < p, dans ce cas, il existe un unique p-sous-groupe de Sylow de G, et il est donc
normal dans GG. Supposons maintenant que p < ¢. Il ne peut pas étre le cas que p ait
un reste 1 modulo ¢, donc le nombre de g-sous-groupes de Sylow, que nous notons ng,
doit vérifier ng =1 ou ng = p?. Si ng = 1, alors le groupe G n’est pas simple. Supposons
donc ng, = p?. Puisquun g¢-sous-groupe de Sylow a un ordre ¢ et que deux g-sous-
groupes de Sylow distincts s’intersectent trivialement, G a p?(q — 1) éléments d’ordre
q. Par conséquent, le p-sous-groupe de Sylow contient tous les p? éléments restants de
G. Dans ce cas, nous concluons que le p-sous-groupe de Sylow est unique, donc normal
dans G.

(4) Sans perte de généralité, supposons que p < ¢ < r. Si le nombre ns de s-sous-groupes de
Sylow est 1 pour s = p,q ou r, alors le s-sous-groupe de Sylow est normal. Supposons
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donc maintenant que n,, ng et n, sont tous strictement supérieurs a 1. En utilisant
les théorémes de Sylow, nous en déduisons que n, > 1, n, > r et n, > pq. Puisque,
pour s = p,q,r, les s-sous-groupes de Sylow sont en intersection triviale (comme dans
le point précédent), nous pouvons compter les éléments de ces s-sous-groupes de Sylow
(ces éléments sont d’ordre s) et constater que

|Gl > np(p—1) +ng(qg — 1) +np(r —1)
>qp—1)+r(g—1)+pg(r—1)
=qp—q+7rq—71+per—pq
=pgr+r(g—1) —q
> |G| +q(q —2)
> |G,

une contradiction.

Exercise 4. Remarquons que tout entier positif m inférieur a 60 peut s’écrire sous 'une des
formes suivantes :

(1) p™ pour un premier p et n > 0,
(2) pg® pour des premiers distincts p,q et a > 0, b > 0,
(3) pqr pour des premiers distincts p, g, r.

Soit G un groupe non abélien d’ordre m tel que m < 60. Si m est de la forme p™, pgr, alors G
n’est pas simple par I'exercice 3.

Si m est de la forme p%q®, alors G est résoluble par le théoreme de Burnside. Mais alors,
la résolubilité de G' implique que H := [G, G| est un sous-groupe normal de G avec G # H.
Comme G n’est pas abélien, nous avons également H non trivial. Ainsi, G n’est pas simple.

Exercise 5. D’apres les théoremes de Sylow, le nombre de 2-sous-groupes de Sylow doit étre
soit 1, soit 3. Dans le premier cas, ce sous-groupe est normal et le résultat est établi. Dans
le second cas, il existe un homomorphisme de groupes G — S3 donné par ’action de G sur
I’ensemble des 2-sous-groupes de Sylow. Si G est simple, cet homomorphisme doit étre injectif,
ce qui implique que G a au plus 6 éléments, ce qui contredit ’hypothese n > 2.

Exercise 6. (1) Soit o € Aut(K) tel que op1(L)o~! = po(L). Soit € L un générateur
du groupe cyclique L. Alors, il existe a € N tel que o 0 ¢1(z) 0 07! = pa(z?) = pa(z)°.
Maintenant, pour tout [ € L, il existe b € N tel que | = zb, ce qui implique que

copi(l)oo™ =copi(a¥) oo

=(0opi(z)oo )
= (pa(a)")’
= pa(a")*

(1) = p2(0)*
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comme suggéré par I'indice. Nous définissons maintenant
YK Xy L — K Xy, L

par ¢ (k,l) = (o(k),1*). Nous laissons au lecteur le soin de vérifier que 1 est un homo-
morphisme de groupes. Pour construire un inverse ¢ : K X, L — K X, L de v, il suffit
d’inverser les roles de @1 et p9 ci-dessus. Pour ce faire, nous manipulons I’équation (1)

pour obtenir que

o lo w2(l) oo =1 (l)b

pour b = —a + 1. Par conséquent, nous savons que ¢ : (k,1) + (07%(k),I°) est un
homomorphisme de groupes. Il est maintenant facile de vérifier que ¢ et ¥ sont des
inverses 'un de 'autre.

(2) Soient @1, 2 : L = Z/pZ — Aut(Z/p*Z) des homomorphismes de groupes non triviaux.
D’apres l'indication, nous savons que Aut(Z/p?Z) = Z/mZ pour un certain entier m.
Comme les deux homomorphismes sont non triviaux, leur noyau doit étre trivial et
et @9 sont donc injectifs. Il s’ensuit que ¢1(L) et p2(L) sont des sous-groupes d’ordre p
dans Z/mZ. Mais les groupes cycliques ont des sous-groupes uniques pour chaque ordre,
donc p1(L) = ¢o(L). En particulier, ils sont conjugués, et nous concluons en utilisant
la premiere partie de I’exercice.

(3) Soient ¢1,p9 : L = Z/pZ — Aut(Z/pZ x Z/pZ = K) des homomorphismes de groupes
non triviaux. Pour identifier le codomaine, nous remarquons que tout automorphisme
f : K — K est un automorphisme linéaire d’espace vectoriel sur L. En effet, pour
a € L, nous avons f(a - (a,b)) = a - f(a,b). Il s’ensuit que les automorphismes L sont
en bijection avec les matrices inversibles a coefficients dans L, et donc

|Aut(K)| = |GL2(Z/pZ)| = (0> = )(* = p) =p(@* —p* —p—1) =p -,
ol r € N est un nombre pair. Il s’ensuit que les p-sous-groupes de Sylow sont d’ordre p,
et donc tous les sous-groupes d’ordre p sont conjugués (d’apres le théoreme de Sylow).
Comme au point précédent, les groupes o1 (L) et @2(L) sont des sous-groupes de Aut(K)
d’ordre p, et donc sont conjugués. Nous concluons par le premier point.

Exercise 7. (1) Par le théoreme de classification des groupes abéliens de type fini, nous
savons que G est isomorphe a I'un des groupes abéliens suivants

Z/p’Z, )P’ x LJpL,  Z/pZ x L/pZ x L]pL.
(2) Soit x € G un élément d’ordre p? et K son sous-groupe engendré
K = (z) =2 Z/p*Z.
Puisque K est d’indice p dans GG, nous savons que K est normal dans G par ’exercice 2,
et donc G/K = Z/pZ. Un générateur [o] de G/K peut étre représenté par tout élément
a € G\K, qui est d’ordre p ou p? dans G. Si a est d’ordre p, il existe une suite exacte
scindée
1= Z/p°Z — G — Z/pZ — 1
ot 5(1) = « est une section. Si chaque o € G\K est d’ordre p?, on obtient une contra-

diction. Il s’ensuit que G est un produit semi-direct, qui est non trivial puisque G n’est
pas abélien. La partie concernant I'unicité de I’énoncé découle de ’exercice précédent.
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Par I'exercice 5 de la semaine derniere, il existe un sous-groupe K < G d’ordre p?.
Comme G n’a pas d’élément d’ordre p?, nous savons par l'exercice 2 de la feuille 4 que
L = 7/pZ x Z]pZ. Comme dans le point précédent, K est normal dans G et nous avons
une suite exacte

1= Z/pZ xZ)pZ — G — Z/pZ — 1.

Maintenant, si [a] € Z/pZ = G/K est un générateur représenté par o € G, nous savons
que «a est d’ordre p dans G puisqu’il n’y a pas d’élément d’ordre p?. Ainsi, s : G/K — G
défini par s([@]) = « est une section. Il s’ensuit que G = (Z/pZ x Z/pZ) X Z/pZ, et
ce produit semi-direct est uniquement déterminé par ’exercice 6.3 puisque G n’est pas
abélien.

En combinant les points précédents, nous savons que tout groupe G d’ordre p? est
isomorphe a I'un des groupes suivants

Z/v*Z, L/p*ZxZ[pZ, Z/pZ x L/pZ x Z/pZ,
Z/p*L X LIpZ,  (Z/pL x Z/pL) x L[pL
ol les produits semi-directs sont non triviaux, donc uniquement déterminés par I’exercice
précédent.

Nous laissons au lecteur la vérification que G est un groupe d’ordre p®. Nous notons que

p+1 1 11
< 0 1> ot (0 1
ne commutent pas. De plus, la seconde matrice est d’ordre p?, ce qui prouve I’assertion

par le deuxieme point de cet exercice.

Nous laissons au lecteur la vérification que G est un groupe non abélien d’ordre p>.
Nous notons que tout A € GG peut s’écrire sous la forme A = I3 + J ou J est nilpotent
(J3 = 0). Par le théoreme du coefficient binomial, on obtient

AP=13+<11)>J+<129>J2:13,

ce qui montre que tout élément de G est d’ordre p. Nous concluons par le troisieme
point de cet exercice.



