
GROUP THEORY 2024 - 25, SOLUTION SHEET 10

Exercise 1. To do yourself. Ask the assistant if something is unclear.

Exercise 2. Let G/H be the set of left co-sets of H in G. Then |G/H| = p and hence there
is an induced homomorphism φ : G → Sp. Let K denote the kernel of φ and consider the
following two lemmas:

Lemma 2.1: The cardinality of G/K is p.

Lemma 2.2: We have an inclusion of subgroups K ⊆ H.

Assuming the lemmas, since the index of both K and H in G is p and K ⊆ H we can conclude
that H = K. The fact that K is a kernel of a homomorphism yields that H = K is a normal
subgroup. We leave the proof of Lemma 2.2 to the reader and prove Lemma 2.1.

Proof of Lemma 2.1:
Let q be a prime factor of |G/K|, then since p is assumed to be the minimum prime dividing |G|
and |G/K| | |G|, we have that q ≥ p. By the first isomorphism theorem applied to φ we obtain
that G/K is isomorphic to a subgroup of Sp. Therefore q | |G/K| | p! and hence q ≤ p. So we
obtain q = p. So |G/K| = pn but |G/K| | p! also implies that n = 1. Hence |G/K| = p. □

Exercise 3. (1) By an exercise of a preceding series, a p-group of order n has normal
subgroups of order pk for all 1 ≤ k ≤ n, which proves the claim.

(2) Without loss of generality suppose that p > q. By the Sylow theorems, the number np
of Sylow p-subgroups of the group divides q and has residue 1 modulo p. As p > q, np
has to be 1 and by an exercise of series 9 the unique Sylow p-subgroup is be normal.

(3) If q < p, then the index of a Sylow p-subgroup P is equal to q, the smallest prime
that divides the order of the group. By exercise 2, P is normal in G. Now suppose
that p < q. It cannot be that case that p has residue 1 modulo q, so the number of
Sylow q-subgroups, which we denote by nq should obey nq = 1 or nq = p2. If nq = 1,
then the unique Sylow q-subgroup is normal and G is not simple, so we assume that
nq = p2. Since a Sylow q-subgroup has order q and two distinct Sylow q-subgroups
intersect trivially (since Q ∩ Q′ is a subgroup of Q, its order must divide the prime q,
hence either Q = Q′ or Q ∩ Q′ = 1), G has p2(q − 1) elements of order q. Therefore,
a Sylow p-subgroup contains all of the remaining p2 elements of G. In this case, we
conclude that the Sylow p-subgroup is unique, so it is normal in G.

(4) Without loss of generality suppose that p < q < r. If the number ns of Sylow s-subgroup
is 1 for s = p, q or r, then the (unique) Sylow s-subgroup is normal. So we suppose

1



2 GROUP THEORY 2024 - 25, SOLUTION SHEET 10

now that np, nq and nr are all strictly bigger than 1. Using Sylow’s theorems, we
deduce that np ≥ q, nq ≥ r and nr ≥ pq. Since for s = p, q, r Sylow s-subgroups are
intersect trivially (as in the preceding point), we can count the elements in those Sylow
s-subgroups (those elements are of order s) to find that:

|G| ≥ np(p− 1) + nq(q − 1) + nr(r − 1)

≥ q(p− 1) + r(q − 1) + pq(r − 1)

= qp− q + rq − r + pqr − pq = pqr + r(q − 1)− q

≥ |G|+ q(q − 2)

> |G|

a contradiction.

Exercise 4. Note that every positive integer less that 60 can be written in one of the following
forms:
1. pn for a prime p and n ≥ 0.
2. paqb for distinct primes p, q and a > 0, b > 0.
3. pqr for distinct primes p, q, r.

Let G be a non-abelian group of order n such that n < 60. If n is of the form pn, pqr then G
is not simple by exercise 3. If n is of the form paqb, then G is solvable by Burnside’s Theorem.
But then solvability of G implies that H := [G,G] is a normal subgroup of G with G ̸= H.
Since G is not abelian we also have that H is not trivial. Hence G is not simple.

Exercise 5. By the Sylow theorems, the number of Sylow 2-subgroups must be either 1 or
3. In the former case, this subgroup is normal and we are done. In the latter case, we have a
group homomorphism G→ S3 given by the action of G on the set of Sylow 2-subgroups. If G is
simple, this must be injective, which means that G has at most 6 elements, which contradicts
the hypothesis n ≥ 2.

Exercise 6. (1) Let σ ∈ Aut(K) such that σφ1(L)σ
−1 = φ2(L). Let x ∈ L be a generator

of the cyclic group L. Then there exists a ∈ N such that σ ◦ φ1(x) ◦ σ−1 = φ2(x
a) =

φ2(x)
a. Now for every l ∈ L there exists b ∈ N such that l = xb, which implies that

σ ◦ φ1(l) ◦ σ−1 = σ ◦ φ1(x
b) ◦ σ−1

= (σ ◦ φ1(x) ◦ σ−1)b

= (φ2(x)
a)b

= φ2(x
b)a

= φ2(l)
a(1)

as suggested by the hint. We now define

ψ : K ⋊φ1 L→ K ⋊φ2 L
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by ψ(k, l) = (σ(k), la). We let the reader verify that ψ is a group homomorphism. To
construct an inverse ϕ : K ⋊φ2 L→ K ⋊φ1 L of ψ, we just change the role of φ1 and φ2

above. By the same argument, there exists an integer b such that

(2) σ−1 ◦ φ2(l) ◦ σ = φ1(l)
b.

Hence we know that ϕ : (k, l) 7→ (σ−1(k), lb) is a group homomorphism. Combining the
two equations (1) and (2) we obtain that φ2(l

ab) = φ2(l) and φ1(l
ab) = φ1(l). It is now

straightforward to check that ϕ and ψ are inverses of each other.
(2) Let φ1, φ2 : L = Z/pZ → Aut(Z/p2Z) be non trivial group homomorphisms. By the hint

we know that Aut(Z/p2Z) ∼= Z/mZ for some integer m. Since the two homomorphisms
are non trivial, their kernel must be trivial and φ1 and φ2 are thus injective. It follows
that φ1(L) and φ2(L) are subgroups of order p in Z/mZ. But cyclic groups have unique
subgroups of each order, hence φ1(L) = φ2(L). In particular they are conjugate, and
we conclude by using the first part of the exercise.

(3) Let φ1, φ2 : L = Z/pZ → Aut(Z/pZ×Z/pZ = K) be non trivial group homomorphisms.
To identify the codomain, we note that every automorphism f : K → K is a L-vector
space linear automorphism. This is because for α ∈ L we have that f(α · (a, b)) =
α · f(a, b). It follows that L-automorphisms are in bijections with invertible matrices
with coefficients in L, and therefore

|Aut(K)| = |GL2(Z/pZ)| = (p2 − 1)(p2 − p) = p(p3 − p2 − p− 1) = p · r
for some even number r ∈ N. It follows that Sylow p-subgroups are of order p, and
hence all subgroups of order p are conjugate (by Sylow’s theorem). As in the previous
point the groups φ1(L) and φ2(L) are subgroups of Aut(K) of order p, and hence are
conjugate. We conclude by the first point.

Exercise 7. (1) By the classification theorem for finitely generated abelian groups, we
know that G is isomorphic to one of the following abelian groups:

Z/p3Z, Z/p2Z× Z/pZ, Z/pZ× Z/pZ× Z/pZ

(2) Let x ∈ G be an element of order p2 and K be its generating subgroup: K = ⟨x⟩ ∼=
Z/p2Z. Since K has index p in G, we know that K is normal in G by exercise 2 and
therefore G/K ∼= Z/pZ. A generator [α] of G/K can be represented by any element
α ∈ G\K, which is of order p or p2 in G. If α has order p there is a split short exact
sequence

1 → Z/p2Z → G→ Z/pZ → 1

where s(1) = α is a splitting. If every α ∈ G\H is of order p2, Archi will write a
contradiction. It follows that G is a semi direct product, which is non trivial since G is
not abelian. The uniqueness part of the statement follows from the previous exercise.

(3) By exercise 5 of last week, there exists a subgroup K ≤ G of order p2. Since G has no
element of order p2, we know by exercise 2 of sheet 4 that L ∼= Z/pZ×Z/pZ. As in the
previous point K is normal in G and we have a short exact sequence

1 → Z/pZ× Z/pZ → G→ Z/pZ → 1.

Now if [α] ∈ Z/pZ = G/K is a generator represented by α ∈ G, we know that α has
order p in G as there is no element of order p2. Hence s : G/K → G defined by s([α]) = α
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is a splitting. It follows that G ∼= (Z/pZ× Z/pZ)⋊Z/pZ, and this semi direct product
is uniquely determined by exercise 6.3 as G is non abelian.

(4) Combining the previous points, we know that any group G of order p3 is isomorphic to
one of the following groups:

Z/p3Z, Z/p2Z× Z/pZ, Z/pZ× Z/pZ× Z/pZ,
Z/p2Z ⋊ Z/pZ, (Z/pZ× Z/pZ)⋊ Z/pZ

where the semi direct products are non-trivial, hence uniquely determined by the last
exercise.

(5) We left to the reader the verification that G is a group of order p3. We note that(
p+ 1 1
0 1

)
and

(
1 1
0 1

)
do not commute. More over the later matrix is of order p2, which proves the claim by
the second point of this exercise.

(6) We left to the reader the verification that G is a non abelian group of order p3. We note
that every A ∈ G can be written as A = I3+ J where J is nilpotent (N3 = 0). Then by
the binomial coefficient theorem,

Ap = I3 +

(
p
1

)
J +

(
p
2

)
J2 = I3

which shows that every element has order p. We conclude by the third point of this
exercise.


