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Sauf indication contraire, toutes les représentations sont définies sur C, le corps des nombres
complexes. Cependant, la plupart des résultats restent valables sur un corps arbitraire également.

Exercise 1. A faire aprés chaque cours!
Revoir le cours et comprendre/remplir les lacunes dans les démonstrations.

Exercise 2. (facile) Echauffement

(1) Soit G = {e} le groupe trivial. Montrez que les représentations de G sur un corps k sont
en bijection avec les espaces vectoriels sur k.

(2) Pour tout groupe GG, démontrez que toute représentation unidimensionnelle de G est
irréductible.

(3) Montrez que tout groupe G posséde une représentation irréductible.

Exercise 3. (facile) Soit V' une représentation d’un groupe G.

Par (G - v)¢, on désigne la sous-représentation de V engendrée par v € V. Celle-ci peut étre
considérée comme la plus petite sous-représentation de V contenant v ou comme l’espace de
toutes les combinaisons linéaires sur C des éléments de l'orbite G - v.

Montrez que V' est une représentation irréductible de G si et seulement si (G - v)c = V pour
tout v € V' \ {0}.

Exercise 4. (moyen)

(1) Etant donné un groupe fini G, montrez qu’il existe un homomorphisme de groupes
injectif
G — GL,(C)
oun = |G|

(2) Soit V' une représentation irréductible d’un groupe fini G. Montrez que dim V < |G].

Remarque : En fait, on peut montrer (dim V)? < |G|. Mais cela nécessite des ou-
tils plus avancés que ceux que nous avons vus.
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Exercise 5. (moyen) Quelques représentations irréductibles de Sy,
(1) Trouvez toutes les représentations unidimensionnelles de S,,.

(2) Considérez 'espace vectoriel suivant

Vi ={(x1,....,z,) € C" | le = 0}.

(a) Soient e, ..., e, la base standard de C™. Trouvez une base de V,, en termes de cette
base.

(b) Montrez que S,, agit sur V,, en permutant les coordonnées. Cela fait de V,, une
représentation de 5.

(c¢) Enfin, montrez que V,, est une représentation irréductible de S,,. Cette représentation
irréductible de dimension n — 1 de S,, est appelée la représentation standard de S,,.

Exercise 6. (moyen) Homc(V, W) comme une représentation de G
Rappel : Etant donné des espaces vectoriels V' et W, ’ensemble des applications linéaires entre
V et W, noté Home (V, W), est lui-méme un espace vectoriel sur C.

(1) Soient V,W des représentations d'un groupe G. Montrez que Homc(V, W) possede la
structure d’une représentation de G, avec 'action de G définie comme suit

(g-T)(w):=g-(T(g"-v))
oug € G, T e Home(V,W)etveV.

(2) On désigne 'ensemble des entrelacements de G entre V' et W par Homgg(V,W).
Considérez également le sous-espace suivant de Homg(V, W)

Home (V, W)Y := {T € Hom¢(V,W) | g-T = T pour tout g € G}.
Montrez que Homg(g)(V, W) = Home(V, w)<.

Ainsi, espace des entrelacements est exactement la sous-représentation de Home (V, W)
sur laquelle G agit trivialement.

Exercise 7. (difficile) Représentations irréductibles des groupes abéliens finis

(1) Soit G un groupe abélien fini. Montrez que toutes les représentations irréductibles de G
sont unidimensionnelles.

(2) Quelles sont toutes les représentations irréductibles de Z/nZ?



