MATH-207(d) Analysis IV

Exercise session 9

Exercice 1. Let a € R. Use the residue theorem to compute the following integral

/_ sinar) (1)

o 1422

You are not allowed to use the fact that the sine function is odd.

Answer. This exercise is very similar to Exercise 2 from the previous Exercise sheet with an
additional complication due to the fact that v € R rather than o > 0. As discussed in the
solution to that problem, one strategy to tackle this integral is to first recognise that we can

write
> sin(ax) > Tm(eo®) /°° elo®
R P ) :
/—ool+372dx /_ e dr = Im : 1+x2dx (2)
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Let us introduce the function

1e%1
e

fa(Z) = ma

It is readily seen that f, is holomorphic on C\ {+i, —i} and has simple poles at z = +i and
z = —1i with residues

Resyi(fa) = % Res_i(fo) = -

e
2
We now consider two seperate cases depending on the value of a.

For this case, as seen in the lecture, we have

] ez‘az . . o »
/OO 1T xde = 2mi (Resyi(fa)) = 2mi (?) =me ™. (3)

Consequently, if & > 0 we have that

> sin(ax) 0 glow a
/OO 2 dszm(/m1+x2dm> :Im(we ) = 0.

Since a < 0 by assumption, it might appear at first glance that we cannot immediately
apply the results of the lecture in this case. However, a nice trick allows us to circumvent
this difficulty.



Notice that if a < 0, we can write

0 eiam q 00 Wd X o—iaw d e 6iﬁx q 4
/w1+w2x_/m1+x2x_/oolwﬁ_/oolw? o @
where we have introduced the constant 8 > 0 as § = —a, and for any z € C, we denote

by Z the complex conjugate of z.

Since > 0, we can now apply the results from the lecture to deduce once again that

T o omi (< -+
/—ool+132 x = 2mi (Res;:(f5)) = 7rz<§>—7re : (5)

Consequently, if « = — < 0 we have that

> sin(ax) 0 eriax _ N
/OO 2 do = Im(/oo 1+x2dm) = Im(ﬂeo‘) = Im(we ) =0.

Exercice 2. Use the residue theorem to compute the Fourier transform f (c) of the function

x
flz) = T3 20 (6)
for all o # 0.
Hint: The following fact might be useful:
22:i<:)z:iﬂ z2:—z'<:)z:il_2
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Answer. Note that by the definition of the Fourier transform (given in Chapter 15 of the
course textbook), it holds that
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where, for any z € C, we denote by Z the complex conjugate of z.
Let us therefore introduce the complex-valued function g as

~

fla) =

Ze’LOéZ

T forall z€ C st. 14+2*#0.
z

9(z) =

Using the hint provided in the exercise, we deduce that

1+z4:(22—i)(22+i):%(z—%) (z—%) (z+%) (z+1\/_§i).

Consequently, g is holomorphic on C\ S where the set S is defined as

S_{1+z'1—i_1+i_1—i}
Slve vl oveT Ve )l




Moreover, at each of the four points in S, the function g has a simple pole, and the associated
residues are given by

—_

ReSI\?i (9) = —ie_(l_i)o‘/ﬁ =1 (—ie—‘“/‘/5 cos(a/V2) + e /Y2 sin(a/ﬁ)) ,
2

1
Res%(g) = ie(”l)o‘/\[ =1 <z’ea/‘/§cos(a/\/§) — ea/\@sin(a/\/i)> :
2

1
Resf%i(g) = jl e1=Da/V2 1 (—ieo‘/‘/5 cos(a/V/2) — e*/V? sin(a/ﬂ)) ,
2
- 1
ﬂﬂwwizZ(wﬂwﬁmq%wﬁnyWﬁgmaA@D.

As in the previous example, we now consider two seperate cases depending on the value of a.

(@ >0]

For this case, as seen in the lecture, we have

/OO xem:c4d$ =271 <Res (9) + Res_@(9)> = 2m (%e_a/ﬂ Sin(a/\@)) ®

Resf% (9) = Ze‘

oo L+ B V2
—mie” V2 sin(a/V/2). (9)

Consequently, if @ > 0 the Fourier transform f () is given by

R 1 0 xefiax xewzz T, _, .

[a<0]

The case a < 0 can be dealt with similarly to the previous exercise. Indeed, we note that

for v < 0 it holds that
o0 xe—ioa:c o) l,eiﬁcc
dr = —d 10
1m1+ﬂ:” 1w1+ﬁ‘” (10)

where we have introduced the constant § > 0 as § = —a, and for any z € C, we denote
by Z the complex conjugate of z.

Since 8 > 0, we can now apply the results from the case o > 0 computed above to deduce

00 iBx
/ fi x4dx:m6_6/\/§sin(5/\/§). (11)

Consequently, if « = —f < 0 the Fourier transform f (o) is given by

—’LOCJ?

er’BI /\[
) et g a \ﬁwﬁ sin(3/v2)

— \/gm'ea/ﬂ sin(a/V/2).

Combining the results for the two cases @ > 0 and o < 0 and using the fact that the sine
function is odd, we finally have for all a # 0 that

fla) = —\/gz'elo‘v‘/i sin(a/v/2).
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Exercice 3. Let v be a simple, closed, differentiable curve contained in the disk of radius 2
and centered at z = 0 in the complex plane. Use the residue theorem to calculate the following
integral.

A tan() d. (12)

Answer. We know that the cosine function is zero precisely at complex numbers of the form
z =nm 4+ 7/2 for any n € Z. Consequently, the only singularities of tan(z) inside the disk of
radius 2 and centered at z = 0 are at the points z = +x/2. Moreover, these singularities are
clearly poles of order one and the associated residues at these points are given by

zsin(z 4+ m/2)
Resqo( tan(z)) = lim (= = m/2) tan(z) = lim  tan(> + 7/2) = lim ===
zcos(z)

= lim
z—>0 — 5111( )

= =-1
= sm(z) ’

and similarly

' zsin(z — pi/2)
Res_. /2 (tan(z)) = Zi12/2(z +7/2) tan(z) = hn(l)ztan(z —7/2) = £1—>0 cos(z —7/2)

—tim —z'cos(z)
z—0  sin(z)
lim — 1
= — lim =—1
2—0 sin(z2)

We now have five cases depending on the nature of the curve ~.

Case 1: +7/2 € intr.

In this case, the residue theorem yields

/tan(z) dz = 27i (Res;/2(tan(z)) + Res_y/2( tan(z))) = 2mi(—2) = —4mi.

5

Case 2: 7/2 € inty and —7/2 ¢ inty .

In this case, the residue theorem yields

/tan(z) dz = 2mi (Res; o (tan(z))) = 2mi(—1) = —2mi.

”
Case 3: —7/2 € inty and 7/2 ¢ inty .

In this case, the residue theorem yields

/tan(z) dz = 271 (Res_, 2 (tan(z))) = 2mi(—1) = —2mi.

v

Case 4: +7/2 ¢ int.
In this case, Cauchy’s theorem yields that

/ tan(z) dz = 0.

4



Case 5: Either 7/2 € vy or —7/2 € 7.
In this case, the the integral is ill-defined.

[ |
Exercice 4. Compute the following integral
2m :
cos(f) sin(20)
————=dé. 13
/0 5 4 3 cos(26) (13)

Hint: A similar exercise was posed in the previous exercise sheet. As before, try to use the
residue theorem by recasting this integral as a contour integral on the unit circle. The starting
point is to observe that for z = ¢ we have

ei@ + e—i@ 1 1 ) ez’@ _ e—i@ 1 1

Answer. Taking into account the hints and replicating the discussion in the lecture, we
deduce that

/2” cos(f) sin(26) 40— /2” i (eie + e‘ie) (em - e_m) W (14)
o D+ 3cos(20) o 41 5+ 3(e%0 4 e720) /2
2 1 (e 1 om0 (200 _ o200 '
:/ (%4 e ) (20— ) g (15)
B 2619 10 + 3 <€210 + €_Z20)
=1(e?)

_ A f(2) dz, (16)

where 7 is the unit circle parameterised by 6 — e? for § € [0,27). Consequently, it suffices to
study the function
—1(z4+1/2)(2*—1/2%) 1 (Z2+1)(z*-1)

IG) = 5 0T sz 1/ 9221022+ 3(z4 + 1)

Consider now the polynomial p(z) = 102% + 3(2* + 1). A direct calculation shows that we can
factorise this polynomial as

1022 +3(2* + 1) = (322 + 1)(2* + 3).

Consequently, the only singularities of the function f inside the unit circle are located at
2z =0,z = z/\/§ and z = —z/\/§ Moreover, the singularity at z = 0 is a pole of order two
while the other two singularities are poles of order one. Computing the residues at each of
these singularities yields

1. d ((22+1)(z4—1)) o,

= — _1 -5
Resolf) = =5 10218+ 1)

1
Res; ) 5(f) = — 5

i ( 2+ 1)z =1) ) _ i
a—i/v3 \322(2 +1/v/3) (2% + 3) 6v/3
2+ 1)(2* = 1) ):_L
(= —i/V3)(z* +3)

1

Res . =—— lim
~iva(f) 3, fm ( "

6v3



We thus deduce from the residue theorem that

/0 ’ % df = /Wf(z) dz = 2mi <Reso(f) + Res;, 5(f) + Res_i\/g(f)> = 0.

Exercice 5. Calculate

T sin”(50/2)
/0 0/2) de. (17)

Answer. The computation works analogously to the example in the lecture.
However, the denominator vanishes near the boundaries of the interval, and hence the question
arises whether the integral is well-defined. To do that, we show that the integrand

_(sin(50/2)\” _
h(0) == (—Sm( 777 ) V6 € [0,2n)

is continuous and bounded over the interval [0,27]. To do so, first note that the sine function
is smooth on R and the function sin(6/2) is zero if and only if § = 2nx for some integer n € Z.
Hence sin(#/2) # 0 on the open interval (0, 27), and therefore the function h is continuous on
the open interval (0,27). Next, we want to show that h is also bounded on the closed interval
[0, 27]. To do so, it suffices to prove that the one-sided end point limits

im 81'11(59/2) and im 81‘11(59/2)
6—0+ sin(60/2) 6—(2m)~ sin(6/2)
both exist. There are several possibilities. For example, we can use the theorem of L’Hopital:
im M iy 5S08(56/2) 5, (18)
9—0+ sin(0/2)  o—o0+  cos(0/2)
lim sin(56/2) — lim cos(56/2) _s (19)

6—(2m)- sin(6/2)  6—(m-  cos(0/2)

Combining the existence of these one-sided end point limites with the continuity of the func-
tion h on the open interval (0, 27), we deduce that h is indeed bounded on the closed initerval
[0,27]. By a classical theorem, it follows that h is Riemann-integrable on the interval [0, 27]
and hence the sought-after integral is indeed well-defined.

We can now turn our attention to the computation of the integral. In order to compute this
integral, we follow exactly the same procedure as in the preceeding exercise. This yields

2 s 2 o (,i50/2 _ —i50/2\2
/ sin”(56/2) d@z/ (e e ) »
0 0

sin®(6/2) (ei0/2 — =i0/2)?
21/ i50/2 _ ,—i50/2\ 2
- / " ) W
0 ei0/2 _ o—it/2
2 /50 2 _—5if
~ / (e . ) ]
0 e —1 e~
27 i50 2
e —1 1
/0 \Z(e“’—l> 6519/ ie [yf(z) z,

=1




where 7 is the unit circle parameterised by 6 +— ¢? for € [0,27). We now study the function

N D 2 1
f(z)=—i pop| ;——z(z +22+22+2z+1) e

We deduce that the only singularity of the function f is located at z = 0, and this singularity
is a pole of order five. Computing the residue at this singularity yields
4

' d
Reso(f) = — %lli%@ (Z4+Z3+22+Z+ 1)2 = —51

It therefore follows from the residue theorem that

) [
/0 sin?(6/2) dO_Lf( ) dz = 2mi (Reso(f)) = 107.



