
MATH-207(d) Analysis IV
Exercise session 9

Exercice 1. Let α ∈ R. Use the residue theorem to compute the following integral∫ ∞

−∞

sin(αx)

1 + x2
dx. (1)

You are not allowed to use the fact that the sine function is odd.

Answer. This exercise is very similar to Exercise 2 from the previous Exercise sheet with an
additional complication due to the fact that α ∈ R rather than α > 0. As discussed in the
solution to that problem, one strategy to tackle this integral is to first recognise that we can
write ∫ ∞

−∞

sin(αx)

1 + x2
dx =

∫ ∞

−∞

Im(eiαx)

1 + x2
dx = Im

(∫ ∞

−∞

eiαx

1 + x2
dx

)
. (2)

Let us introduce the function

fα(z) =
eiαz

1 + z2
,

It is readily seen that fα is holomorphic on C \ {+i,−i} and has simple poles at z = +i and
z = −i with residues

Res+i(fα) =
e−α

2i
Res−i(fα) =

eα

2i

We now consider two seperate cases depending on the value of α.

α ≥ 0

For this case, as seen in the lecture, we have∫ ∞

−∞

eiαx

1 + x2
dx = 2πi (Res+i(fα)) = 2πi

(
e−α

2i

)
= πe−α. (3)

Consequently, if α ≥ 0 we have that∫ ∞

−∞

sin(αx)

1 + x2
dx = Im

(∫ ∞

−∞

eiαx

1 + x2
dx

)
= Im

(
πe−α

)
= 0.

α < 0

Since α < 0 by assumption, it might appear at first glance that we cannot immediately
apply the results of the lecture in this case. However, a nice trick allows us to circumvent
this difficulty.
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Notice that if α < 0, we can write∫ ∞

−∞

eiαx

1 + x2
dx =

∫ ∞

−∞

e−iαx

1 + x2
dx =

∫ ∞

−∞

e−iαx

1 + x2
dx =

∫ ∞

−∞

eiβx

1 + x2
dx, (4)

where we have introduced the constant β > 0 as β = −α, and for any z ∈ C, we denote
by z the complex conjugate of z.

Since β > 0, we can now apply the results from the lecture to deduce once again that∫ ∞

−∞

eiβx

1 + x2
dx = 2πi (Res+i(fβ)) = 2πi

(
e−β

2i

)
= πe−β. (5)

Consequently, if α = −β < 0 we have that∫ ∞

−∞

sin(αx)

1 + x2
dx = Im

(∫ ∞

−∞

e−iαx

1 + x2
dx

)
= Im

(
πeα

)
= Im

(
πeα

)
= 0.

■

Exercice 2. Use the residue theorem to compute the Fourier transform f̂(α) of the function

f(x) =
x

1 + x4
, (6)

for all α ̸= 0.
Hint: The following fact might be useful:

z2 = i ⇐⇒ z = ±1 + i√
2
, z2 = −i ⇐⇒ z = ±1− i√

2
.

Answer. Note that by the definition of the Fourier transform (given in Chapter 15 of the
course textbook), it holds that

f̂(α) =
1√
2π

∫ ∞

−∞

xe−iαx

1 + x4
dx =

1√
2π

∫ ∞

−∞

xeiαx

1 + x4
dx, (7)

where, for any z ∈ C, we denote by z the complex conjugate of z.
Let us therefore introduce the complex-valued function g as

g(z) =
zeiαz

1 + z4
for all z ∈ C s.t. 1 + z4 ̸= 0.

Using the hint provided in the exercise, we deduce that

1 + z4 = (z2 − i)(z2 + i) =
1

2

(
z − 1 + i√

2

)(
z − 1− i√

2

)(
z +

1 + i√
2

)(
z +

1− i√
2

)
.

Consequently, g is holomorphic on C \ S where the set S is defined as

S =

{
1 + i√

2
,
1− i√

2
,−1 + i√

2
,−1− i√

2

}
.
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Moreover, at each of the four points in S, the function g has a simple pole, and the associated
residues are given by

Res 1+i√
2
(g) = − i

4
e−(1−i)α/

√
2 =

1

4

(
−ie−α/

√
2 cos(α/

√
2) + e−α/

√
2 sin(α/

√
2)
)
,

Res 1−i√
2
(g) =

i

4
e(1+i)α/

√
2 =

1

4

(
ieα/

√
2 cos(α/

√
2)− eα/

√
2 sin(α/

√
2)
)
,

Res− 1+i√
2
(g) = − i

4
e(1−i)α/

√
2 =

1

4

(
−ieα/

√
2 cos(α/

√
2)− eα/

√
2 sin(α/

√
2)
)
,

Res− 1−i√
2
(g) =

i

4
e−(1+i)α/

√
2 =

1

4

(
ie−α/

√
2 cos(α/

√
2) + e−α/

√
2 sin(α/

√
2)
)
.

As in the previous example, we now consider two seperate cases depending on the value of α.

α > 0

For this case, as seen in the lecture, we have∫ ∞

−∞

xeiαx

1 + x4
dx =2πi

(
Res 1+i√

2
(g) + Res− 1−i√

2
(g)

)
= 2πi

(
1

2
e−α/

√
2 sin(α/

√
2)

)
(8)

=πie−α/
√
2 sin(α/

√
2). (9)

Consequently, if α > 0 the Fourier transform f̂(α) is given by

f̂(α) =
1√
2π

∫ ∞

−∞

xe−iαx

1 + x4
dx =

1√
2π

∫ ∞

−∞

xeiαx

1 + x4
dx = −

√
π

2
ie−α/

√
2 sin(α/

√
2).

α < 0

The case α < 0 can be dealt with similarly to the previous exercise. Indeed, we note that
for α < 0 it holds that ∫ ∞

−∞

xe−iαx

1 + x4
dx =

∫ ∞

−∞

xeiβx

1 + x4
dx, (10)

where we have introduced the constant β > 0 as β = −α, and for any z ∈ C, we denote
by z the complex conjugate of z.

Since β > 0, we can now apply the results from the case α > 0 computed above to deduce∫ ∞

−∞

xeiβx

1 + x4
dx = πie−β/

√
2 sin(β/

√
2). (11)

Consequently, if α = −β < 0 the Fourier transform f̂(α) is given by

f̂(α) =
1√
2π

∫ ∞

−∞

xe−iαx

1 + x4
dx =

1√
2π

∫ ∞

−∞

xeiβx

1 + x4
dx =

√
π

2
ie−β/

√
2 sin(β/

√
2)

=−
√

π

2
πieα/

√
2 sin(α/

√
2).

Combining the results for the two cases α > 0 and α < 0 and using the fact that the sine
function is odd, we finally have for all α ̸= 0 that

f̂(α) = −
√

π

2
ie−|α|/

√
2 sin(α/

√
2).

■
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Exercice 3. Let γ be a simple, closed, differentiable curve contained in the disk of radius 2
and centered at z = 0 in the complex plane. Use the residue theorem to calculate the following
integral. ∫

γ

tan(z) dz. (12)

Answer. We know that the cosine function is zero precisely at complex numbers of the form
z = nπ + π/2 for any n ∈ Z. Consequently, the only singularities of tan(z) inside the disk of
radius 2 and centered at z = 0 are at the points z = ±π/2. Moreover, these singularities are
clearly poles of order one and the associated residues at these points are given by

Resπ/2
(
tan(z)

)
= lim

z→π/2
(z − π/2) tan(z) = lim

z→0
z tan(z + π/2) = lim

z→0

z sin(z + π/2)

cos(z + π/2)

= lim
z→0

z cos(z)

− sin(z)

=− lim
z→0

z

sin(z)
= −1,

and similarly

Res−π/2

(
tan(z)

)
= lim

z→−π/2
(z + π/2) tan(z) = lim

z→0
z tan(z − π/2) = lim

z→0

z sin(z − pi/2)

cos(z − π/2)

= lim
z→0

−z cos(z)

sin(z)

=− lim
z→0

z

sin(z)
= −1.

We now have five cases depending on the nature of the curve γ.

Case 1: ±π/2 ∈ intγ.

In this case, the residue theorem yields∫
γ

tan(z) dz = 2πi
(
Resπ/2

(
tan(z)

)
+Res−π/2

(
tan(z)

))
= 2πi(−2) = −4πi.

Case 2: π/2 ∈ intγ and −π/2 /∈ intγ .

In this case, the residue theorem yields∫
γ

tan(z) dz = 2πi
(
Resπ/2

(
tan(z)

))
= 2πi(−1) = −2πi.

Case 3: −π/2 ∈ intγ and π/2 /∈ intγ .

In this case, the residue theorem yields∫
γ

tan(z) dz = 2πi
(
Res−π/2

(
tan(z)

))
= 2πi(−1) = −2πi.

Case 4: ±π/2 /∈ intγ.

In this case, Cauchy’s theorem yields that∫
γ

tan(z) dz = 0.
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Case 5: Either π/2 ∈ γ or −π/2 ∈ γ.

In this case, the the integral is ill-defined.

■

Exercice 4. Compute the following integral∫ 2π

0

cos(θ) sin(2θ)

5 + 3 cos(2θ)
dθ. (13)

Hint : A similar exercise was posed in the previous exercise sheet. As before, try to use the
residue theorem by recasting this integral as a contour integral on the unit circle. The starting
point is to observe that for z = eiθ we have

cos(θ) =
eiθ + e−iθ

2
=

1

2

(
z +

1

z

)
sin(θ) =

eiθ − e−iθ

2i
=

1

2i

(
z − 1

z

)
.

Answer. Taking into account the hints and replicating the discussion in the lecture, we
deduce that ∫ 2π

0

cos(θ) sin(2θ)

5 + 3 cos(2θ)
dθ =

∫ 2π

0

1

4i

(
eiθ + e−iθ

) (
e2iθ − e−2iθ

)
5 + 3 (e2iθ + e−2iθ) /2

dθ (14)

=

∫ 2π

0

−1

2eiθ

(
eiθ + e−iθ

) (
e2iθ − e−2iθ

)
10 + 3 (e2iθ + e−i2θ)︸ ︷︷ ︸

:=f(eiθ)

ieiθdθ (15)

=

∫
γ

f(z) dz, (16)

where γ is the unit circle parameterised by θ 7→ eiθ for θ ∈ [0, 2π). Consequently, it suffices to
study the function

f(z) =
−1

2z

(z + 1/z) (z2 − 1/z2)

10 + 3 (z2 + 1/z2)
= − 1

2z2
(z2 + 1)(z4 − 1)

10z2 + 3(z4 + 1)
.

Consider now the polynomial p(z) = 10z2 + 3(z4 + 1). A direct calculation shows that we can
factorise this polynomial as

10z2 + 3(z4 + 1) = (3z2 + 1)(z2 + 3).

Consequently, the only singularities of the function f inside the unit circle are located at
z = 0, z = i/

√
3 and z = −i/

√
3. Moreover, the singularity at z = 0 is a pole of order two

while the other two singularities are poles of order one. Computing the residues at each of
these singularities yields

Res0(f) =− 1

2
lim
z→0

d

dz

(
(z2 + 1)(z4 − 1)

10z2 + 3(z4 + 1)

)
= 0,

Resi/
√
3(f) =− 1

2
lim

z→i/
√
3

(
(z2 + 1)(z4 − 1)

3z2(z + i/
√
3)(z2 + 3)

)
=

i

6
√
3

Res−i
√
3(f) =− 1

2
lim

z→−i/
√
3

(
(z2 + 1)(z4 − 1)

3z2(z − i/
√
3)(z2 + 3)

)
= − i

6
√
3
.
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We thus deduce from the residue theorem that∫ 2π

0

cos(θ) sin(2θ)

5 + 3 cos(2θ)
dθ =

∫
γ

f(z) dz = 2πi
(
Res0(f) + Resi/

√
3(f) + Res−i

√
3(f)

)
= 0.

■

Exercice 5. Calculate ∫ 2π

0

sin2(5θ/2)

sin2(θ/2)
dθ. (17)

Answer. The computation works analogously to the example in the lecture.
However, the denominator vanishes near the boundaries of the interval, and hence the question
arises whether the integral is well-defined. To do that, we show that the integrand

h(θ) :=

(
sin(5θ/2)

sin(θ/2)

)2

∀θ ∈ [0, 2π)

is continuous and bounded over the interval [0, 2π]. To do so, first note that the sine function
is smooth on R and the function sin(θ/2) is zero if and only if θ = 2nπ for some integer n ∈ Z.
Hence sin(θ/2) ̸= 0 on the open interval (0, 2π), and therefore the function h is continuous on
the open interval (0, 2π). Next, we want to show that h is also bounded on the closed interval
[0, 2π]. To do so, it suffices to prove that the one-sided end point limits

lim
θ→0+

sin(5θ/2)

sin(θ/2)
and lim

θ→(2π)−

sin(5θ/2)

sin(θ/2)

both exist. There are several possibilities. For example, we can use the theorem of L’Hopital:

lim
θ→0+

sin(5θ/2)

sin(θ/2)
= lim

θ→0+
5
cos(5θ/2)

cos(θ/2)
= 5, (18)

lim
θ→(2π)−

sin(5θ/2)

sin(θ/2)
= lim

θ→(2π)−
5
cos(5θ/2)

cos(θ/2)
= 5. (19)

Combining the existence of these one-sided end point limites with the continuity of the func-
tion h on the open interval (0, 2π), we deduce that h is indeed bounded on the closed initerval
[0, 2π]. By a classical theorem, it follows that h is Riemann-integrable on the interval [0, 2π]
and hence the sought-after integral is indeed well-defined.

We can now turn our attention to the computation of the integral. In order to compute this
integral, we follow exactly the same procedure as in the preceeding exercise. This yields∫ 2π

0

sin2(5θ/2)

sin2(θ/2)
dθ =

∫ 2π

0

(
ei5θ/2 − e−i5θ/2

)2
(eiθ/2 − e−iθ/2)

2 dθ

=

∫ 2π

0

(
ei5θ/2 − e−i5θ/2

eiθ/2 − e−iθ/2

)2

dθ

=

∫ 2π

0

(
ei5θ − 1

eiθ − 1

)2
e−5iθ

e−iθ
dθ

=

∫ 2π

0

−i

(
ei5θ − 1

eiθ − 1

)2
1

e5iθ︸ ︷︷ ︸
:=f(eiθ)

ieiθdθ =

∫
γ

f(z) dz,
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where γ is the unit circle parameterised by θ 7→ eiθ for θ ∈ [0, 2π). We now study the function

f(z) = −i

(
z5 − 1

z − 1

)2
1

z5
= −i

(
z4 + z3 + z2 + z + 1

)2 1

z5
.

We deduce that the only singularity of the function f is located at z = 0, and this singularity
is a pole of order five. Computing the residue at this singularity yields

Res0(f) =− i

4!
lim
z→0

d4

dz4
(
z4 + z3 + z2 + z + 1

)2
= −5i.

It therefore follows from the residue theorem that∫ 2π

0

sin2(5θ/2)

sin2(θ/2)
dθ =

∫
γ

f(z) dz = 2πi (Res0(f)) = 10π.

■
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