

MATH-207(d) Analysis IV

Exercise session 9

Exercice 1. Let $\alpha \in \mathbb{R}$. Use the residue theorem to compute the following integral

$$\int_{-\infty}^{\infty} \frac{\sin(\alpha x)}{1+x^2} dx. \quad (1)$$

You are *not* allowed to use the fact that the sine function is odd.

Answer. This exercise is very similar to Exercise 2 from the previous Exercise sheet with an additional complication due to the fact that $\alpha \in \mathbb{R}$ rather than $\alpha > 0$. As discussed in the solution to that problem, one strategy to tackle this integral is to first recognise that we can write

$$\int_{-\infty}^{\infty} \frac{\sin(\alpha x)}{1+x^2} dx = \int_{-\infty}^{\infty} \frac{\operatorname{Im}(e^{i\alpha x})}{1+x^2} dx = \operatorname{Im}\left(\int_{-\infty}^{\infty} \frac{e^{i\alpha x}}{1+x^2} dx\right). \quad (2)$$

Let us introduce the function

$$f_{\alpha}(z) = \frac{e^{i\alpha z}}{1+z^2},$$

It is readily seen that f_{α} is holomorphic on $\mathbb{C} \setminus \{+i, -i\}$ and has simple poles at $z = +i$ and $z = -i$ with residues

$$\operatorname{Res}_{+i}(f_{\alpha}) = \frac{e^{-\alpha}}{2i} \quad \operatorname{Res}_{-i}(f_{\alpha}) = \frac{e^{\alpha}}{2i}$$

We now consider two separate cases depending on the value of α .

$$\boxed{\alpha \geq 0}$$

For this case, as seen in the lecture, we have

$$\int_{-\infty}^{\infty} \frac{e^{i\alpha x}}{1+x^2} dx = 2\pi i (\operatorname{Res}_{+i}(f_{\alpha})) = 2\pi i \left(\frac{e^{-\alpha}}{2i}\right) = \pi e^{-\alpha}. \quad (3)$$

Consequently, if $\alpha \geq 0$ we have that

$$\int_{-\infty}^{\infty} \frac{\sin(\alpha x)}{1+x^2} dx = \operatorname{Im}\left(\int_{-\infty}^{\infty} \frac{e^{i\alpha x}}{1+x^2} dx\right) = \operatorname{Im}(\pi e^{-\alpha}) = 0.$$

$$\boxed{\alpha < 0}$$

Since $\alpha < 0$ by assumption, it might appear at first glance that we cannot immediately apply the results of the lecture in this case. However, a nice trick allows us to circumvent this difficulty.

Notice that if $\alpha < 0$, we can write

$$\int_{-\infty}^{\infty} \frac{e^{i\alpha x}}{1+x^2} dx = \int_{-\infty}^{\infty} \overline{\frac{e^{-i\alpha x}}{1+x^2}} dx = \overline{\int_{-\infty}^{\infty} \frac{e^{-i\alpha x}}{1+x^2} dx} = \overline{\int_{-\infty}^{\infty} \frac{e^{i\beta x}}{1+x^2} dx}, \quad (4)$$

where we have introduced the constant $\beta > 0$ as $\beta = -\alpha$, and for any $z \in \mathbb{C}$, we denote by \bar{z} the complex conjugate of z .

Since $\beta > 0$, we can now apply the results from the lecture to deduce once again that

$$\int_{-\infty}^{\infty} \frac{e^{i\beta x}}{1+x^2} dx = 2\pi i (\text{Res}_{+i}(f_{\beta})) = 2\pi i \left(\frac{e^{-\beta}}{2i} \right) = \pi e^{-\beta}. \quad (5)$$

Consequently, if $\alpha = -\beta < 0$ we have that

$$\int_{-\infty}^{\infty} \frac{\sin(\alpha x)}{1+x^2} dx = \text{Im} \left(\overline{\int_{-\infty}^{\infty} \frac{e^{-i\alpha x}}{1+x^2} dx} \right) = \text{Im}(\overline{\pi e^{\alpha}}) = \text{Im}(\pi e^{\alpha}) = 0.$$

■

Exercice 2. Use the residue theorem to compute the Fourier transform $\hat{f}(\alpha)$ of the function

$$f(x) = \frac{x}{1+x^4}, \quad (6)$$

for all $\alpha \neq 0$.

Hint: The following fact might be useful:

$$z^2 = i \iff z = \pm \frac{1+i}{\sqrt{2}}, \quad z^2 = -i \iff z = \pm \frac{1-i}{\sqrt{2}}.$$

Answer. Note that by the definition of the Fourier transform (given in Chapter 15 of the course textbook), it holds that

$$\hat{f}(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{xe^{-i\alpha x}}{1+x^4} dx = \frac{1}{\sqrt{2\pi}} \overline{\int_{-\infty}^{\infty} \frac{xe^{i\alpha x}}{1+x^4} dx}, \quad (7)$$

where, for any $z \in \mathbb{C}$, we denote by \bar{z} the complex conjugate of z .

Let us therefore introduce the complex-valued function g as

$$g(z) = \frac{ze^{i\alpha z}}{1+z^4} \quad \text{for all } z \in \mathbb{C} \quad \text{s.t. } 1+z^4 \neq 0.$$

Using the hint provided in the exercise, we deduce that

$$1+z^4 = (z^2 - i)(z^2 + i) = \frac{1}{2} \left(z - \frac{1+i}{\sqrt{2}} \right) \left(z - \frac{1-i}{\sqrt{2}} \right) \left(z + \frac{1+i}{\sqrt{2}} \right) \left(z + \frac{1-i}{\sqrt{2}} \right).$$

Consequently, g is holomorphic on $\mathbb{C} \setminus S$ where the set S is defined as

$$S = \left\{ \frac{1+i}{\sqrt{2}}, \frac{1-i}{\sqrt{2}}, -\frac{1+i}{\sqrt{2}}, -\frac{1-i}{\sqrt{2}} \right\}.$$

Moreover, at each of the four points in S , the function g has a simple pole, and the associated residues are given by

$$\begin{aligned}\text{Res}_{\frac{1+i}{\sqrt{2}}}(g) &= -\frac{i}{4}e^{-(1-i)\alpha/\sqrt{2}} = \frac{1}{4} \left(-ie^{-\alpha/\sqrt{2}} \cos(\alpha/\sqrt{2}) + e^{-\alpha/\sqrt{2}} \sin(\alpha/\sqrt{2}) \right), \\ \text{Res}_{\frac{1-i}{\sqrt{2}}}(g) &= \frac{i}{4}e^{(1+i)\alpha/\sqrt{2}} = \frac{1}{4} \left(ie^{\alpha/\sqrt{2}} \cos(\alpha/\sqrt{2}) - e^{\alpha/\sqrt{2}} \sin(\alpha/\sqrt{2}) \right), \\ \text{Res}_{-\frac{1+i}{\sqrt{2}}}(g) &= -\frac{i}{4}e^{(1-i)\alpha/\sqrt{2}} = \frac{1}{4} \left(-ie^{\alpha/\sqrt{2}} \cos(\alpha/\sqrt{2}) - e^{\alpha/\sqrt{2}} \sin(\alpha/\sqrt{2}) \right), \\ \text{Res}_{-\frac{1-i}{\sqrt{2}}}(g) &= \frac{i}{4}e^{-(1+i)\alpha/\sqrt{2}} = \frac{1}{4} \left(ie^{-\alpha/\sqrt{2}} \cos(\alpha/\sqrt{2}) + e^{-\alpha/\sqrt{2}} \sin(\alpha/\sqrt{2}) \right).\end{aligned}$$

As in the previous example, we now consider two separate cases depending on the value of α .

$$\boxed{\alpha > 0}$$

For this case, as seen in the lecture, we have

$$\int_{-\infty}^{\infty} \frac{xe^{i\alpha x}}{1+x^4} dx = 2\pi i \left(\text{Res}_{\frac{1+i}{\sqrt{2}}}(g) + \text{Res}_{-\frac{1-i}{\sqrt{2}}}(g) \right) = 2\pi i \left(\frac{1}{2}e^{-\alpha/\sqrt{2}} \sin(\alpha/\sqrt{2}) \right) \quad (8)$$

$$= \pi i e^{-\alpha/\sqrt{2}} \sin(\alpha/\sqrt{2}). \quad (9)$$

Consequently, if $\alpha > 0$ the Fourier transform $\hat{f}(\alpha)$ is given by

$$\hat{f}(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{xe^{-i\alpha x}}{1+x^4} dx = \frac{1}{\sqrt{2\pi}} \overline{\int_{-\infty}^{\infty} \frac{xe^{i\alpha x}}{1+x^4} dx} = -\sqrt{\frac{\pi}{2}} i e^{-\alpha/\sqrt{2}} \sin(\alpha/\sqrt{2}).$$

$$\boxed{\alpha < 0}$$

The case $\alpha < 0$ can be dealt with similarly to the previous exercise. Indeed, we note that for $\alpha < 0$ it holds that

$$\int_{-\infty}^{\infty} \frac{xe^{-i\alpha x}}{1+x^4} dx = \int_{-\infty}^{\infty} \frac{xe^{i\beta x}}{1+x^4} dx, \quad (10)$$

where we have introduced the constant $\beta > 0$ as $\beta = -\alpha$, and for any $z \in \mathbb{C}$, we denote by \bar{z} the complex conjugate of z .

Since $\beta > 0$, we can now apply the results from the case $\alpha > 0$ computed above to deduce

$$\int_{-\infty}^{\infty} \frac{xe^{i\beta x}}{1+x^4} dx = \pi i e^{-\beta/\sqrt{2}} \sin(\beta/\sqrt{2}). \quad (11)$$

Consequently, if $\alpha = -\beta < 0$ the Fourier transform $\hat{f}(\alpha)$ is given by

$$\begin{aligned}\hat{f}(\alpha) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{xe^{-i\alpha x}}{1+x^4} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{xe^{i\beta x}}{1+x^4} dx = \sqrt{\frac{\pi}{2}} i e^{-\beta/\sqrt{2}} \sin(\beta/\sqrt{2}) \\ &= -\sqrt{\frac{\pi}{2}} \pi i e^{\alpha/\sqrt{2}} \sin(\alpha/\sqrt{2}).\end{aligned}$$

Combining the results for the two cases $\alpha > 0$ and $\alpha < 0$ and using the fact that the sine function is odd, we finally have for all $\alpha \neq 0$ that

$$\hat{f}(\alpha) = -\sqrt{\frac{\pi}{2}} i e^{-|\alpha|/\sqrt{2}} \sin(\alpha/\sqrt{2}).$$

■

Exercice 3. Let γ be a simple, closed, differentiable curve contained in the disk of radius 2 and centered at $z = 0$ in the complex plane. Use the residue theorem to calculate the following integral.

$$\int_{\gamma} \tan(z) dz. \quad (12)$$

Answer. We know that the cosine function is zero precisely at complex numbers of the form $z = n\pi + \pi/2$ for any $n \in \mathbb{Z}$. Consequently, the only singularities of $\tan(z)$ inside the disk of radius 2 and centered at $z = 0$ are at the points $z = \pm\pi/2$. Moreover, these singularities are clearly poles of order one and the associated residues at these points are given by

$$\begin{aligned} \text{Res}_{\pi/2}(\tan(z)) &= \lim_{z \rightarrow \pi/2} (z - \pi/2) \tan(z) = \lim_{z \rightarrow 0} z \tan(z + \pi/2) = \lim_{z \rightarrow 0} \frac{z \sin(z + \pi/2)}{\cos(z + \pi/2)} \\ &= \lim_{z \rightarrow 0} \frac{z \cos(z)}{-\sin(z)} \\ &= -\lim_{z \rightarrow 0} \frac{z}{\sin(z)} = -1, \end{aligned}$$

and similarly

$$\begin{aligned} \text{Res}_{-\pi/2}(\tan(z)) &= \lim_{z \rightarrow -\pi/2} (z + \pi/2) \tan(z) = \lim_{z \rightarrow 0} z \tan(z - \pi/2) = \lim_{z \rightarrow 0} \frac{z \sin(z - \pi/2)}{\cos(z - \pi/2)} \\ &= \lim_{z \rightarrow 0} \frac{-z \cos(z)}{\sin(z)} \\ &= -\lim_{z \rightarrow 0} \frac{z}{\sin(z)} = -1. \end{aligned}$$

We now have five cases depending on the nature of the curve γ .

Case 1: $\pm\pi/2 \in \text{int}\gamma$.

In this case, the residue theorem yields

$$\int_{\gamma} \tan(z) dz = 2\pi i (\text{Res}_{\pi/2}(\tan(z)) + \text{Res}_{-\pi/2}(\tan(z))) = 2\pi i(-2) = -4\pi i.$$

Case 2: $\pi/2 \in \text{int}\gamma$ and $-\pi/2 \notin \overline{\text{int}\gamma}$.

In this case, the residue theorem yields

$$\int_{\gamma} \tan(z) dz = 2\pi i (\text{Res}_{\pi/2}(\tan(z))) = 2\pi i(-1) = -2\pi i.$$

Case 3: $-\pi/2 \in \text{int}\gamma$ and $\pi/2 \notin \overline{\text{int}\gamma}$.

In this case, the residue theorem yields

$$\int_{\gamma} \tan(z) dz = 2\pi i (\text{Res}_{-\pi/2}(\tan(z))) = 2\pi i(-1) = -2\pi i.$$

Case 4: $\pm\pi/2 \notin \overline{\text{int}\gamma}$.

In this case, Cauchy's theorem yields that

$$\int_{\gamma} \tan(z) dz = 0.$$

Case 5: Either $\pi/2 \in \gamma$ or $-\pi/2 \in \gamma$.

In this case, the the integral is ill-defined. ■

Exercice 4. Compute the following integral

$$\int_0^{2\pi} \frac{\cos(\theta) \sin(2\theta)}{5 + 3 \cos(2\theta)} d\theta. \quad (13)$$

Hint: A similar exercise was posed in the previous exercise sheet. As before, try to use the residue theorem by recasting this integral as a contour integral on the unit circle. The starting point is to observe that for $z = e^{i\theta}$ we have

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{1}{2} \left(z + \frac{1}{z} \right) \quad \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{1}{2i} \left(z - \frac{1}{z} \right).$$

Answer. Taking into account the hints and replicating the discussion in the lecture, we deduce that

$$\int_0^{2\pi} \frac{\cos(\theta) \sin(2\theta)}{5 + 3 \cos(2\theta)} d\theta = \int_0^{2\pi} \frac{1}{4i} \frac{(e^{i\theta} + e^{-i\theta})(e^{2i\theta} - e^{-2i\theta})}{5 + 3(e^{2i\theta} + e^{-2i\theta})/2} d\theta \quad (14)$$

$$= \int_0^{2\pi} \underbrace{\frac{-1}{2e^{i\theta}} \frac{(e^{i\theta} + e^{-i\theta})(e^{2i\theta} - e^{-2i\theta})}{10 + 3(e^{2i\theta} + e^{-2i\theta})}}_{:=f(e^{i\theta})} ie^{i\theta} d\theta \quad (15)$$

$$= \int_{\gamma} f(z) dz, \quad (16)$$

where γ is the unit circle parameterised by $\theta \mapsto e^{i\theta}$ for $\theta \in [0, 2\pi)$. Consequently, it suffices to study the function

$$f(z) = \frac{-1}{2z} \frac{(z + 1/z)(z^2 - 1/z^2)}{10 + 3(z^2 + 1/z^2)} = -\frac{1}{2z^2} \frac{(z^2 + 1)(z^4 - 1)}{10z^2 + 3(z^4 + 1)}.$$

Consider now the polynomial $p(z) = 10z^2 + 3(z^4 + 1)$. A direct calculation shows that we can factorise this polynomial as

$$10z^2 + 3(z^4 + 1) = (3z^2 + 1)(z^2 + 3).$$

Consequently, the only singularities of the function f inside the unit circle are located at $z = 0, z = i/\sqrt{3}$ and $z = -i/\sqrt{3}$. Moreover, the singularity at $z = 0$ is a pole of order two while the other two singularities are poles of order one. Computing the residues at each of these singularities yields

$$\text{Res}_0(f) = -\frac{1}{2} \lim_{z \rightarrow 0} \frac{d}{dz} \left(\frac{(z^2 + 1)(z^4 - 1)}{10z^2 + 3(z^4 + 1)} \right) = 0,$$

$$\text{Res}_{i/\sqrt{3}}(f) = -\frac{1}{2} \lim_{z \rightarrow i/\sqrt{3}} \left(\frac{(z^2 + 1)(z^4 - 1)}{3z^2(z + i/\sqrt{3})(z^2 + 3)} \right) = \frac{i}{6\sqrt{3}}$$

$$\text{Res}_{-i/\sqrt{3}}(f) = -\frac{1}{2} \lim_{z \rightarrow -i/\sqrt{3}} \left(\frac{(z^2 + 1)(z^4 - 1)}{3z^2(z - i/\sqrt{3})(z^2 + 3)} \right) = -\frac{i}{6\sqrt{3}}.$$

We thus deduce from the residue theorem that

$$\int_0^{2\pi} \frac{\cos(\theta) \sin(2\theta)}{5 + 3 \cos(2\theta)} d\theta = \int_{\gamma} f(z) dz = 2\pi i \left(\text{Res}_0(f) + \text{Res}_{i/\sqrt{3}}(f) + \text{Res}_{-i/\sqrt{3}}(f) \right) = 0.$$

■

Exercice 5. Calculate

$$\int_0^{2\pi} \frac{\sin^2(5\theta/2)}{\sin^2(\theta/2)} d\theta. \quad (17)$$

Answer. The computation works analogously to the example in the lecture.

However, the denominator vanishes near the boundaries of the interval, and hence the question arises whether the integral is well-defined. To do that, we show that the integrand

$$h(\theta) := \left(\frac{\sin(5\theta/2)}{\sin(\theta/2)} \right)^2 \quad \forall \theta \in [0, 2\pi)$$

is continuous and bounded over the interval $[0, 2\pi]$. To do so, first note that the sine function is smooth on \mathbb{R} and the function $\sin(\theta/2)$ is zero if and only if $\theta = 2n\pi$ for some integer $n \in \mathbb{Z}$. Hence $\sin(\theta/2) \neq 0$ on the open interval $(0, 2\pi)$, and therefore the function h is continuous on the open interval $(0, 2\pi)$. Next, we want to show that h is also bounded on the closed interval $[0, 2\pi]$. To do so, it suffices to prove that the one-sided end point limits

$$\lim_{\theta \rightarrow 0^+} \frac{\sin(5\theta/2)}{\sin(\theta/2)} \quad \text{and} \quad \lim_{\theta \rightarrow (2\pi)^-} \frac{\sin(5\theta/2)}{\sin(\theta/2)}$$

both exist. There are several possibilities. For example, we can use the theorem of L'Hopital:

$$\lim_{\theta \rightarrow 0^+} \frac{\sin(5\theta/2)}{\sin(\theta/2)} = \lim_{\theta \rightarrow 0^+} 5 \frac{\cos(5\theta/2)}{\cos(\theta/2)} = 5, \quad (18)$$

$$\lim_{\theta \rightarrow (2\pi)^-} \frac{\sin(5\theta/2)}{\sin(\theta/2)} = \lim_{\theta \rightarrow (2\pi)^-} 5 \frac{\cos(5\theta/2)}{\cos(\theta/2)} = 5. \quad (19)$$

Combining the existence of these one-sided end point limits with the continuity of the function h on the open interval $(0, 2\pi)$, we deduce that h is indeed bounded on the closed interval $[0, 2\pi]$. By a classical theorem, it follows that h is Riemann-integrable on the interval $[0, 2\pi]$ and hence the sought-after integral is indeed well-defined.

We can now turn our attention to the computation of the integral. In order to compute this integral, we follow exactly the same procedure as in the preceding exercise. This yields

$$\begin{aligned} \int_0^{2\pi} \frac{\sin^2(5\theta/2)}{\sin^2(\theta/2)} d\theta &= \int_0^{2\pi} \frac{(e^{i5\theta/2} - e^{-i5\theta/2})^2}{(e^{i\theta/2} - e^{-i\theta/2})^2} d\theta \\ &= \int_0^{2\pi} \left(\frac{e^{i5\theta/2} - e^{-i5\theta/2}}{e^{i\theta/2} - e^{-i\theta/2}} \right)^2 d\theta \\ &= \int_0^{2\pi} \left(\frac{e^{i5\theta} - 1}{e^{i\theta} - 1} \right)^2 \frac{e^{-5i\theta}}{e^{-i\theta}} d\theta \\ &= \int_0^{2\pi} \underbrace{-i \left(\frac{e^{i5\theta} - 1}{e^{i\theta} - 1} \right)^2 \frac{1}{e^{5i\theta}}}_{:=f(e^{i\theta})} i e^{i\theta} d\theta = \int_{\gamma} f(z) dz, \end{aligned}$$

where γ is the unit circle parameterised by $\theta \mapsto e^{i\theta}$ for $\theta \in [0, 2\pi)$. We now study the function

$$f(z) = -i \left(\frac{z^5 - 1}{z - 1} \right)^2 \frac{1}{z^5} = -i (z^4 + z^3 + z^2 + z + 1)^2 \frac{1}{z^5}.$$

We deduce that the only singularity of the function f is located at $z = 0$, and this singularity is a pole of order five. Computing the residue at this singularity yields

$$\text{Res}_0(f) = -\frac{i}{4!} \lim_{z \rightarrow 0} \frac{d^4}{dz^4} (z^4 + z^3 + z^2 + z + 1)^2 = -5i.$$

It therefore follows from the residue theorem that

$$\int_0^{2\pi} \frac{\sin^2(5\theta/2)}{\sin^2(\theta/2)} d\theta = \int_{\gamma} f(z) dz = 2\pi i (\text{Res}_0(f)) = 10\pi.$$

■