MATH-207(d) Analysis IV

Exercise session 7

Exercice 1. Let 7(t) = € be the standard parameterization of the unit circle. Compute the

following integrals
A= / _“ dz B = /—sin(z) dz
L2z —=2) 7 L 2(z+20)
34 1 1
C = /—'z Z;) dz, D = /— — — + zsin(z)e” dz.
4 2(z—2i 42 2

Answer.

(a) We use the Cauchy integral formula, with n = 1:

A—/y%dz—/vez/(z—;%dz

= 2mi - (ZG_ZQ)/(O) = 2mi - (%) (0) = 27 - (?) = %Bm'.

(b) Again, we use the Cauchy integral formula, with n = 0:

/ sin(2)/(2 +20) |, _sin(0) _
: > 0— 22

(c) Similar as above,

23 —iz
C= [ -——-d
Lz(z—Qz’) :

:/@3_”)/(2_2“ dz = (0° — i0)/(z — 2i) = 0.

z

(5)
(6)

Note that z = 0 is a regular point of the integrand, as can be seen by the powers in the

numerator and the denominator.

(d) The integral D is easy:

1 1 1
D:/—dz—/—3dz—l—/zsin(z)exdz:/—dz:27rz'.
vy ? v* gl v %



Exercice 2. Let v(t) = 10e” be a parameterization of the circle around 0 with radius 10.
Consider the function

sin(z)
(z+1)(z24+2)(2+3)
What are the singularities of f and what the orders of the poles? Calculate

/7 f(2)dz. (9)

Hint: express the numerator and denominator as Taylor series at different points; you don’t
need all the coefficients. To compute the residues, you can either use the formula from the
lecture or the Cauchy integral formulas. Try both!

f(z) =

(8)

Answer. The singularities are the zeroes of the denominator: z; = —1, 2o = —2, and z3 = —3.
They all lie within the circle v, and hence we can use the residue theorem:
/f(z)dz = 2mi - (Res,l(f) + Res_o(f) + Res,g(f)) (10)
”

It remains to determine the residues at those singularities.

First, we determine the order of the poles. We know that sin(—1), sin(—2), and sin(—3) are
non-zero, so the Taylor series of sine at 1, 2, and 3 must have a non-zero constant term. Since
the factors (z + 1), (z +2), and (z 4 3) only appear once in the denominator, they are poles of
order 1. Formally, we can also verify this with the discussion as seen in the lecture.

For example, if sin(z) = cg + ¢1(2 + 1) + ca(2 + 1)* + ... is the Taylor series of sin at 1, then

sin(z) Cctalz+l)Felz+ 1)+ (11)
(z+1)(z+2)(2+3) (z+1)(22+ 5z + 6)

:Co+Cl(Z+1)+C2(Z+1) +... (12)

+1D)(12+7(z2—1)+ (2 — 1)?)
_co+cl( +1)+ ez +1)%+... (13)

1224 1)+ 7(z =124+ (2 — 1)%

Another way of seeing the same thing notes that
sin(2)/(z +2)(z + 3)

(z+1) (14)

has a holomorphic numerator near —1 (with non-zero constant term) and a denominator with
Taylor series having only the first power.

Second, as these are first-order poles, we need to compute the residuals. We may use the
formula from the lecture and obtain

Res A1) = i (= 046) = Jim ) =) (15
Res_»(f) = lim (2 +2)f(z) = lim_ - :,111[;22)+ 5= sm£ 12) = —sin(—2), (16)
Res (/) = lim (= + 3)f(2) = Sin(Q_?’) (17)

m



Exercice 3 (Essential singularities). Consider the function f(z) = e'/%.
(a) Determine the nature of the singularity.

(b) Let zg = o + iyo be a point on the complex unit sphere. Study the value f(tz) as ¢
moves closer to zero depending on zy. Hint: in other words, we study how f behaves as
we move straight towards the origin from different directions.

(c¢) Given y € C, identify all the w € C for which y = e®.

(d) Show that in every small neighborhood of f, every complex number is attained by f
infinitely often. Formally: show that for every R > 0 and y € C there exist infinitely
many z € Bg(0) for which y = f(z).

Answer.

(a) As seen in the lecture (see also previous Exercise Sheet 6), this function has an essential
singularity at the origin.

(b) Let z =z + iy € C be arbitrary. Obviously, it holds that

T—yi

f(z) = e/? = ex?? = e e,

Consider now any point zy = zo + iyy on the complex unit sphere. Then for any t € R,
we have that tzg = txy + ityy so that

txg —tygt

x —ypt
» o T -y,

1
2221122 2224422 T 22102 22 o ZYo,
f(tzo):et%*t Y e Tt = e “0tY0 e T0tY0 = et et .

1,
t

In order to build some intuition about the behaviour of the function f(tz) as t — 0, let
us first consider two simple cases:

e In the case xo = 0, we have |yy| = 1 and thus

fz) = =¥ (18)
Consequently, as t goes to zero, f(z) will traverse the unit circle. Depending on
whether yo = 1 or yg = —1, it will circle in the counter clockwise or clockwise
direction.
e In the case yo = 0, we have |zo| = 1 and thus
fz)=et =e? (19)
Consequently, as t goes to zero, f(z) will go to either real +oco or 0, depending on
whether g =1 or g = —1.
Equipped with this intuition, we can now return to the general case and recall that
fltzo) = ete (20)

where zy = g + iyo. The behavior of the function f(tzg) for ¢ — 0 is now clear:

(i) Depending on whether x, is positive or negative, f(tzy) will either go to zero towards
infinity as ¢t goes to zero. Additionally, the convergence will be slow for z close to
Z€ero.



()

(ii) Depending on whether 1 is positive or negative, f(zo) will circle clockwise or counter
clockwise around the unit circle as t goes to zero.

Consider some arbitrary 0 # y € C with polar representation

y =re,  for some >0 and € [0,2n). (21)

Let w = a +1b € C with a,b € R. Then it follows that

Since we seek w € C such that e =y, we must have that

a

r=e = a = log(r).
This in turn implies that we must also have
b=060+2mn for any n € Z.

Consequently, for an arbitrary y € C with polar representation y = re®, the set of all
w € C such that y = e is given by

w = log(r) + (0 + 2mn).

In particular, we see that the function w — e attains every value y # 0 for infinitely
many choices of w.

We want to study the values of the function e!/? over the set
Br(0)={z€C : 0< |z| <R},

which is the complex punctured disk of radius R > 0. As a first remark, we observe that
the function z + 1/z defines a bijection from Br(0) to the set C\ By/z(0). Explicitly,

C\Byr(0)={z€C : R< ||}

We want to show that there are infinitely many z € C with 0 < |z| < R such that y = e'/?,
no matter how small R > 0. Equivalently, we can also show that there are infinitely many
w € C with |w| > 1/R such that y = e".

Consider some arbitrary 0 # y € C with polar representation

y =re,  for some >0 and @ € [0,2n).

It follows that from the previous sub-task of the present exercise that y = ¢* for all w € C
of the form

w = log(r) + (0 + 2mn).

In particular, for any choice of R > 0, no matter how small, there exists ng € Z such that
for all n > ng

lw|? = [log(r)|* + |6 + 27m|2 > =

This completes the proof.



Remark: this behavior of e is a good example of how complex functions behave near essen-
tial singularities: near this essential singularity, every complex number except zero is attained
infintely often, no matter how close we “zoom in” towards the singularity. In that sense, the
essential singularity behaves “chaotically”. This is also known as the Great Picard Theorem. B

1
z4-1"

Exercice 4. Consider the function f(z) =
(a) Determine the singularities of f and their nature.

(b) Let v be a circle of radius » > 0 centered at the origin. Determine the values of the
integral

/7 f(2) dz (22)

for cases r = 0.5, r =1, and r = 2.

(¢) More generally, determine the integral for any r > 0.

Answer.

(a) Notice that we can write

1 1 1

A1 (22—1)(Z2+1) e+ )E-D(z+i)(z—1)

f(z) =

Consequently, then function f has a simple pole at the points z = £1 and z = +1.

(b) We consider each case seperately.

Case r = 0.5 In this case, the function f is analytic on inty. Thus, by Cauchy’s theorem,

we have that
/f(z) dz = 0.
.

Case r =1 In this case, the function f has four singularities on the curve 7. Conse-
quently, the integral is ill-defined.

Case r = 2 In this case, the function f has four simple poles in inty. Thus, the residue
theorem implies that

/f(z) dz = 271 (Re_1 + R61 + Re_i + Rez) .
v

Computing each of the above residues yields

1 1 ¢
dz=27mi|—=4+-—-+-]=0.
[yf(z) z m( 4+4 4+4) 0

(c) The general case follows easily from similar arguments as above, Indeed, we have that

0 if 1
JECLEERS 7
~ ill-defined ifr=1



Exercice 5. Let v C C be any simple close piecewise regular curve. Compute the following

integrals depending on the curve 7.

a) [ el/#dz

(b) fv 2(22§+1d2

() [, <5dz
(D) [, eearende

(e) [, *dz

Answer.

(a) Case 1: 0 € int(y). We compute the Laurent series in z =0

1 /1\" 11
1/z2_ I o -
=S () S

We see that Resy(f) = 0 and therefore

Lf@ﬁz=

NB: the function is not holomorphic on the interior of 7, but the integral is zero nonethe-

less.

Case 2: 0 ¢ int(7). By Cauchy theorem we immediately conclude f f(z)dz =0.

Case 3: 0 € 7. The integral is ill-defined as the curve passes through the singularity.

(b) Denote f(z) = Z?j_%

First observe that since the numerator is not zero in z = 3, we know that 3 is a pole of

order 3. Then the residue is

2

1 d
Ress(f) = §£1E>r1@ (2 +2241) =1.

We now distinguish three cases.

Case 1: 3 ¢ int(y). By Cauchy theorem we can immediately conclude

Af@ﬂzz

Case 2 : 3 € intr.



/f(z)dz = 27i Rez(f) = 2mi.

~

Case 3: 3 € 7. The integral is ill-defined.

Denote f(z) = ;é .

The Laurent series in z = 0 is

o0

el 1 x 11 11
0= =2l um = Lumm

Therefore z = 0 is an isolated essential singularity and we have

Reso(f) = 0.

Case 1: 0 ¢ int(7). By Cauchy theorem we immediately conclude

L f(2)dz =

Case 2: 0 € int(7y).

/f(z)dz = 2mi Reo(f) = 0.

Case 3: 0 € 7. The integral is ill-defined.

Denote

1

&) = e T2 —ay

We start by computing the residues in 7,4 and —2. The first two are poles of order 1
whereas -2 is a pole of order 2.

Res;(f) = lim(z — i) f(2) = (+220—1)
Resu(f) = lim(z = 4)/(:) = 3o
Res_5(f) = lim di [(z+2)*f(2)] = jfgd% [m}
—2z4+441 8+
zl—l>m2<z—z 2):36(2'—1-2)



We now distinguish several cases.

Case 1: i,—2,4 ¢ int(y). Then by Cauchy theorem we immediately get

Lf(z)dz = 0.

Case 2: Exactly one point among i, —2,4 in is int(7).

Subcase 2a: i € int(7y) but —2,4 ¢ int(7).

21

/f(z)dz = 2miRes;(f) = m

Subcase 2b: —2 € int(y) but 7,4 ¢ int(y).

L w8 +1)
Af(z)dz = 2miRes_5(f) = BT
Subcase 2¢: 4 € int(7y) but i, —2 ¢ int(y).
/ F(2)dz = 2miResa(f) = #

Case 3: Exact two points amongs i, —2, 4 is in int(7).
Subcase 3a: i, —2 € int(7y) but 4 ¢ int~y.

/f(Z)dZ = 2mi (Resi(f) + Res (/) = T;P (z i el 8?:;i) '

Subcase 3b: 7,4 € inty but —2 ¢ int 7.

/f(z)dz = 2mi (Re;(f) + Rea(f)) = (szzl) ((2 +12)2 B %) '

Subcase 3c: —2,4 € int(7y) but ¢ ¢ int(7y).

/f(z)dz = 27i (Res_a(f) + Rea(f)) = 71% <(Z~8++2i)2 - (i _1 4)) .

Case 4: i,—2,4 € int(7).

/ F(2)dz = 27 (Resi(f) + Resa(f) + Resa(f))

5

- 1 n 8+1 1 0

= 2mi — = 0.
(1—4)i+2)?2 36(i+2)%2 36(i—4)

Case 5: 1 € yor —2 € y or 4 € «y. The integral is ill-defined.

8



(e) Consider the function C 3 z — f(z) = sin(z)/z. Clearly, this function is holomorphic on
the punctured complex plane C\ {0}. A priori, f appears to have a singularity at z =0
but in order to study this singularity more carefully, let us compute the Laurent series
of f at zg = 0. Using similar arguments as those utilised in Exercise Sheet 5 and 6, we
deduce that

2n

sin -
/) Z 2n @2n+ 1)

n=0

and the radius of convergece of this Laurent series is infinite. It follows that f has a
so-called remowable singularity at z = 0. In other words, by using the above Laurent
series and redefining f at the point z = 0 as f(0) = 1, we obtain a holomorphic extension
fof f over the entire complex plane, i.e.,

fz) = Z(—U"L _ {f(Z) if2 70,

— (2n+1)! 1 if 2 =0.

Applying now Cauchy’s theorem we deduce that

/7 f() dz = / F(z) dz =

for all curves «y such that 0 ¢ ~.
|

Exercice 6. Determine whether f has a singularity at zy = 0 and if yes, determine the order
of the pole.

(a) f(z) = 23512
(b) f(z) = =
(¢) f(2) = 7=
(d) f(2) = =t
(o) f(2) = =i
(1) f(z) ==

(8) f(z) =372

Answer.
(a) Since lim, o f(z) = 3, f does not have a singularity at zo = 0.

(b) In this case, f has a pole of order one at zy = 0. Indeed, we can write

1 /141 142
f(z)=- (z 1_ i) where g(z) = . ii is continuous at zy = 0.



()

In this case, we can write for all z # 0 that

fR)=5—=

22—z z—-1
Thus, lim,_, f(z) = 0. Consequently, f has a removable singularity at zy = 0.

For all z # 0, we can write

27242741 1+ 2+ 22

J(z) = 272 4 24422 - 14 23 44247

Thus, lim, o f(z) = 1. Consequently, f has a removable singularity at zp = 0.

For all z # 0, we can write

f(Z): = 1+23+424

270 4 272 4 22 1+22 42" 1 (1+28427
272 4 x4 422 23 426 4427 3

Since the function

) 14+ 23427
)= —
g 1+ 23 + 424

is continuous at zy = 0, we deduce that f has a third order pole at zy = 0.

For all z # 0, we can write

L A
27443 14324

f(z) =

Thus, lim, o f(z) = 0. Consequently, f has a removable singularity at zy = 0.

For all z # 0, we can write

27T 4+1 1427 1 (1427
f(z): = :;< )

Since the function

) 14 27
Z:
g 142

is continuous at zg = 0, we deduce that f has a seventh order pole at z; = 0.
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