
MATH-207(d) Analysis IV
Exercise session 7

Exercice 1. Let γ(t) = eit be the standard parameterization of the unit circle. Compute the
following integrals

A =

∫
γ

ez

z2(z − 2)
dz, B =

∫
γ

sin(z)

z(z + 2i)
dz,

C =

∫
γ

z3 − iz

z(z − 2i)
dz, D =

∫
γ

1

z
− 1

z3
+ z sin(z)ex dz.

Answer.

(a) We use the Cauchy integral formula, with n = 1:

A =

∫
γ

ez

z2(z − 2)
dz =

∫
γ

ez/(z − 2)

z2
dz (1)

= 2πi ·
(

ez

z − 2

)′

(0) = 2πi ·
(
ez(z − 2)− ez

(z − 2)2

)
(0) = 2πi ·

(
−3

4

)
=

−3

2
πi. (2)

(b) Again, we use the Cauchy integral formula, with n = 0:

B =

∫
γ

sin(z)

z(z + 2i)
dz (3)

=

∫
γ

sin(z)/(z + 2i)

z
dz = 2πi

sin(0)

0− 2i
= 0. (4)

(c) Similar as above,

C =

∫
γ

z3 − iz

z(z − 2i)
dz (5)

=

∫
γ

(z3 − iz)/(z − 2i)

z
dz = (03 − i0)/(z − 2i) = 0. (6)

Note that z = 0 is a regular point of the integrand, as can be seen by the powers in the
numerator and the denominator.

(d) The integral D is easy:

D =

∫
γ

1

z
dz −

∫
γ

1

z3
dz +

∫
γ

z sin(z)ex dz =

∫
γ

1

z
dz = 2πi. (7)

■

1



Exercice 2. Let γ(t) = 10eit be a parameterization of the circle around 0 with radius 10.
Consider the function

f(z) =
sin(z)

(z + 1)(z + 2)(z + 3)
. (8)

What are the singularities of f and what the orders of the poles? Calculate∫
γ

f(z)dz. (9)

Hint: express the numerator and denominator as Taylor series at different points; you don’t
need all the coefficients. To compute the residues, you can either use the formula from the
lecture or the Cauchy integral formulas. Try both!

Answer. The singularities are the zeroes of the denominator: z1 = −1, z2 = −2, and z3 = −3.
They all lie within the circle γ, and hence we can use the residue theorem:∫

γ

f(z)dz = 2πi ·
(
Res−1(f) + Res−2(f) + Res−3(f)

)
. (10)

It remains to determine the residues at those singularities.

First, we determine the order of the poles. We know that sin(−1), sin(−2), and sin(−3) are
non-zero, so the Taylor series of sine at 1, 2, and 3 must have a non-zero constant term. Since
the factors (z + 1), (z + 2), and (z + 3) only appear once in the denominator, they are poles of
order 1. Formally, we can also verify this with the discussion as seen in the lecture.
For example, if sin(z) = c0 + c1(z + 1) + c2(z + 1)2 + . . . is the Taylor series of sin at 1, then

sin(z)

(z + 1)(z + 2)(z + 3)
=

c0 + c1(z + 1) + c2(z + 1)2 + . . .

(z + 1)(z2 + 5z + 6)
(11)

=
c0 + c1(z + 1) + c2(z + 1)2 + . . .

(z + 1)(12 + 7(z − 1) + (z − 1)2)
(12)

=
c0 + c1(z + 1) + c2(z + 1)2 + . . .

12(z + 1) + 7(z − 1)2 + (z − 1)3
. (13)

Another way of seeing the same thing notes that

sin(z)/(z + 2)(z + 3)

(z + 1)
(14)

has a holomorphic numerator near −1 (with non-zero constant term) and a denominator with
Taylor series having only the first power.

Second, as these are first-order poles, we need to compute the residuals. We may use the
formula from the lecture and obtain

Res−1(f) = lim
z→−1

(z + 1)f(z) = lim
z→−1

sin(z)

(z + 2)(z + 3)
=

sin(−1)

2
, (15)

Res−2(f) = lim
z→−2

(z + 2)f(z) = lim
z→−2

sin(z)

(z + 1)(z + 3)
=

sin(−2)

−1
= − sin(−2), (16)

Res−3(f) = lim
z→−3

(z + 3)f(z) =
sin(−3)

2
. (17)
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Exercice 3 (Essential singularities). Consider the function f(z) = e1/z.

(a) Determine the nature of the singularity.

(b) Let z0 = x0 + iy0 be a point on the complex unit sphere. Study the value f(tz0) as t
moves closer to zero depending on z0. Hint: in other words, we study how f behaves as
we move straight towards the origin from different directions.

(c) Given y ∈ C, identify all the w ∈ C for which y = ew.

(d) Show that in every small neighborhood of f , every complex number is attained by f
infinitely often. Formally: show that for every R > 0 and y ∈ C there exist infinitely
many z ∈ BR(0) for which y = f(z).

Answer.

(a) As seen in the lecture (see also previous Exercise Sheet 6), this function has an essential
singularity at the origin.

(b) Let z = x+ iy ∈ C be arbitrary. Obviously, it holds that

f(z) = e1/z = e
x−yi

x2+y2 = e
x

x2+y2 e
−yi

x2+y2 .

Consider now any point z0 = x0 + iy0 on the complex unit sphere. Then for any t ∈ R,
we have that tz0 = tx0 + ity0 so that

f(tz0) = e
tx0

t2x20+t2y20 e
−ty0i

t2x20+t2y20 = e
1
t
· x0
x20+y20 e

1
t
· −y0i

x20+y20 = e
x0
t e

−y0
t

i.

In order to build some intuition about the behaviour of the function f(tz0) as t → 0, let
us first consider two simple cases:

• In the case x0 = 0, we have |y0| = 1 and thus

f(z) = ei
−y0
t = e

±i
t . (18)

Consequently, as t goes to zero, f(z) will traverse the unit circle. Depending on
whether y0 = 1 or y0 = −1, it will circle in the counter clockwise or clockwise
direction.

• In the case y0 = 0, we have |x0| = 1 and thus

f(z) = e
x0
t = e

±1
t . (19)

Consequently, as t goes to zero, f(z) will go to either real +∞ or 0, depending on
whether x0 = 1 or x0 = −1.

Equipped with this intuition, we can now return to the general case and recall that

f(tz0) = e
x0
t e

−y0
t

i, (20)

where z0 = x0 + iy0. The behavior of the function f(tz0) for t → 0 is now clear:

(i) Depending on whether x0 is positive or negative, f(tz0) will either go to zero towards
infinity as t goes to zero. Additionally, the convergence will be slow for x0 close to
zero.
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(ii) Depending on whether y0 is positive or negative, f(z0) will circle clockwise or counter
clockwise around the unit circle as t goes to zero.

(c) Consider some arbitrary 0 ̸= y ∈ C with polar representation

y = reiθ, for some r > 0 and θ ∈ [0, 2π). (21)

Let w = a+ ib ∈ C with a, b ∈ R. Then it follows that

ew = eaeib.

Since we seek w ∈ C such that ew = y, we must have that

r = ea =⇒ a = log(r).

This in turn implies that we must also have

b = θ + 2πn for any n ∈ Z.

Consequently, for an arbitrary y ∈ C with polar representation y = reiθ, the set of all
w ∈ C such that y = ew is given by

w = log(r) + i (θ + 2πn) .

In particular, we see that the function w 7→ ew attains every value y ̸= 0 for infinitely
many choices of w.

(d) We want to study the values of the function e1/z over the set

ḂR(0) = {z ∈ C : 0 < |z| < R} ,

which is the complex punctured disk of radius R > 0. As a first remark, we observe that
the function z 7→ 1/z defines a bijection from ḂR(0) to the set C \B1/R(0). Explicitly,

C \B1/R(0) = {z ∈ C : R < |z|}

We want to show that there are infinitely many z ∈ C with 0 < |z| < R such that y = e1/z,
no matter how small R > 0. Equivalently, we can also show that there are infinitely many
w ∈ C with |w| > 1/R such that y = ew.

Consider some arbitrary 0 ̸= y ∈ C with polar representation

y = reiθ, for some r > 0 and θ ∈ [0, 2π).

It follows that from the previous sub-task of the present exercise that y = ew for all w ∈ C
of the form

w = log(r) + i (θ + 2πn) .

In particular, for any choice of R > 0, no matter how small, there exists n0 ∈ Z such that
for all n ≥ n0

|w|2 = |log(r)|2 + |θ + 2πn|2 > 1

R2
.

This completes the proof.
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Remark: this behavior of e
1
z is a good example of how complex functions behave near essen-

tial singularities: near this essential singularity, every complex number except zero is attained
infintely often, no matter how close we “zoom in” towards the singularity. In that sense, the
essential singularity behaves “chaotically”. This is also known as the Great Picard Theorem. ■

Exercice 4. Consider the function f(z) = 1
z4−1

.

(a) Determine the singularities of f and their nature.

(b) Let γ be a circle of radius r > 0 centered at the origin. Determine the values of the
integral ∫

γ

f(z) dz (22)

for cases r = 0.5, r = 1, and r = 2.

(c) More generally, determine the integral for any r > 0.

Answer.

(a) Notice that we can write

f(z) =
1

z4 − 1
=

1(
z2 − 1

)(
z2 + 1

) =
1

(z + 1)(z − 1)(z + i)(z − i)
.

Consequently, then function f has a simple pole at the points z = ±1 and z = ±i.

(b) We consider each case seperately.

Case r = 0.5 In this case, the function f is analytic on intγ. Thus, by Cauchy’s theorem,
we have that ∫

γ

f(z) dz = 0.

Case r = 1 In this case, the function f has four singularities on the curve γ. Conse-
quently, the integral is ill-defined.

Case r = 2 In this case, the function f has four simple poles in intγ. Thus, the residue
theorem implies that∫

γ

f(z) dz = 2πi (Re−1 +Re1 +Re−i +Rei) .

Computing each of the above residues yields∫
γ

f(z) dz = 2πi

(
−1

4
+

1

4
− i

4
+

i

4

)
= 0.

(c) The general case follows easily from similar arguments as above, Indeed, we have that∫
γ

f(z) dz =

{
0 if r ̸= 1

ill-defined if r = 1
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Exercice 5. Let γ ⊂ C be any simple close piecewise regular curve. Compute the following
integrals depending on the curve γ.

(a)
∫
γ
e1/z

2
dz

(b)
∫
γ

z2+2z+1
(z−3)3

dz

(c)
∫
γ

e1/z

z2
dz

(d)
∫
γ

1
(z−i)(z+2)2(z−4)

dz

(e)
∫
γ

sin(z)
z

dz

Answer.

(a) Case 1: 0 ∈ int(γ). We compute the Laurent series in z = 0

e1/z
2

=
∞∑
n=0

1

n!

(
1

z2

)n

=
∞∑
n=1

1

n!

1

z2n
+ 1.

We see that Res0(f) = 0 and therefore

∫
γ

f(z)dz = 0.

NB: the function is not holomorphic on the interior of γ, but the integral is zero nonethe-
less.

Case 2: 0 /∈ int(γ). By Cauchy theorem we immediately conclude
∫
γ
f(z)dz = 0.

Case 3: 0 ∈ γ. The integral is ill-defined as the curve passes through the singularity.

(b) Denote f(z) = z2+2z+1
(z−3)3

.

First observe that since the numerator is not zero in z = 3, we know that 3 is a pole of
order 3. Then the residue is

Res3(f) =
1

2
lim
z→3

d2

dz2
(
z2 + 2z + 1

)
= 1.

We now distinguish three cases.

Case 1: 3 /∈ int(γ). By Cauchy theorem we can immediately conclude

∫
γ

f(z)dz = 0.

Case 2 : 3 ∈ intγ.
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∫
γ

f(z)dz = 2πiRe3(f) = 2πi.

Case 3: 3 ∈ γ. The integral is ill-defined.

(c) Denote f(z) = e1/z

z2
.

The Laurent series in z = 0 is

f(z) =
e1/z

z2
=

1

z2

∞∑
n=0

1

n!

1

zn
=

∞∑
n=0

1

n!

1

zn+2
,

Therefore z = 0 is an isolated essential singularity and we have

Res0(f) = 0.

Case 1: 0 /∈ int(γ). By Cauchy theorem we immediately conclude

∫
γ

f(z)dz = 0.

Case 2: 0 ∈ int(γ).

∫
γ

f(z)dz = 2πiRe0(f) = 0.

Case 3: 0 ∈ γ. The integral is ill-defined.

(d) Denote

f(z) =
1

(z − i)(z + 2)2(z − 4)
.

We start by computing the residues in i, 4 and −2. The first two are poles of order 1
whereas -2 is a pole of order 2.

Resi(f) = lim
z→i

(z − i)f(z) =
1

(i+ 2)2(i− 4)

Res4(f) = lim
z→4

(z − 4)f(z) =
1

36(4− i)

Res−2(f) = lim
z→−2

d

dz

[
(z + 2)2f(z)

]
= lim

z→−2

d

dz

[
1

(z − i)(z − 4)

]
= lim

z→−2

(
−2z + 4 + i

(z − i)2(z − 4)2

)
=

8 + i

36(i+ 2)2
.
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We now distinguish several cases.

Case 1: i,−2, 4 /∈ int(γ). Then by Cauchy theorem we immediately get

∫
γ

f(z)dz = 0.

Case 2: Exactly one point among i,−2, 4 in is int(γ).

Subcase 2a: i ∈ int(γ) but −2, 4 /∈ int(γ).

∫
γ

f(z)dz = 2πiResi(f) =
2πi

(i+ 2)2(i− 4)
.

Subcase 2b: −2 ∈ int(γ) but i, 4 /∈ int(γ).

∫
γ

f(z)dz = 2πiRes−2(f) =
πi(8 + i)

18(i+ 2)2
.

Subcase 2c: 4 ∈ int(γ) but i,−2 /∈ int(γ).

∫
γ

f(z)dz = 2πiRes4(f) =
πi

18(4− i)
.

Case 3: Exact two points amongs i,−2, 4 is in int(γ).

Subcase 3a: i,−2 ∈ int(γ) but 4 /∈ int γ.

∫
γ

f(z)dz = 2πi (Resi(f) + Res−2(f)) =
2πi

(i+ 2)2

(
1

i− 4
+

8 + i

36

)
.

Subcase 3b: i, 4 ∈ int γ but −2 /∈ int γ.

∫
γ

f(z)dz = 2πi (Rei(f) + Re4(f)) =
2πi

(i− 4)

(
1

(i+ 2)2
− 1

36

)
.

Subcase 3c: −2, 4 ∈ int(γ) but i /∈ int(γ).

∫
γ

f(z)dz = 2πi (Res−2(f) + Re4(f)) =
πi

18

(
8 + i

(i+ 2)2
− 1

(i− 4)

)
.

Case 4: i,−2, 4 ∈ int(γ).

∫
γ

f(z)dz = 2πi (Resi(f) + Res2(f) + Res4(f))

= 2πi

(
1

(i− 4)(i+ 2)2
+

8 + i

36(i+ 2)2
− 1

36(i− 4)

)
= 0.

Case 5: i ∈ γ or −2 ∈ γ or 4 ∈ γ. The integral is ill-defined.
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(e) Consider the function C ∋ z 7→ f(z) = sin(z)/z. Clearly, this function is holomorphic on
the punctured complex plane C \ {0}. A priori, f appears to have a singularity at z = 0
but in order to study this singularity more carefully, let us compute the Laurent series
of f at z0 = 0. Using similar arguments as those utilised in Exercise Sheet 5 and 6, we
deduce that

f(z) =
sin(z)

z
=

∞∑
n=0

(−1)n
z2n

(2n+ 1)!
,

and the radius of convergece of this Laurent series is infinite. It follows that f has a
so-called removable singularity at z = 0. In other words, by using the above Laurent
series and redefining f at the point z = 0 as f(0) = 1, we obtain a holomorphic extension

f̃ of f over the entire complex plane, i.e.,

f̃(z) =
∞∑
n=0

(−1)n
z2n

(2n+ 1)!
=

{
f(z) if z ̸= 0,

1 if z = 0.

Applying now Cauchy’s theorem we deduce that∫
γ

f(z) dz =

∫
γ

f̃(z) dz = 0,

for all curves γ such that 0 /∈ γ.

■

Exercice 6. Determine whether f has a singularity at z0 = 0 and if yes, determine the order
of the pole.

(a) f(z) = z2+2z+3
z+1

(b) f(z) = 1+i
z2+z

(c) f(z) = z3

z2−z

(d) f(z) = z−2+z−1+1
z−2+z+4z2

(e) f(z) = z−5+z−2+z2

z−2+z+4z2

(f) f(z) = z−1+1
z−4+3

(g) f(z) = z−7+1
1+z

Answer.

(a) Since limz→0 f(z) = 3, f does not have a singularity at z0 = 0.

(b) In this case, f has a pole of order one at z0 = 0. Indeed, we can write

f(z) =
1

z

(
1 + i

z + 1

)
where g(z) =

1 + i

z + 1
is continuous at z0 = 0.

9



(c) In this case, we can write for all z ̸= 0 that

f(z) =
z3

z2 − z
=

z2

z − 1
.

Thus, limz→0 f(z) = 0. Consequently, f has a removable singularity at z0 = 0.

(d) For all z ̸= 0, we can write

f(z) =
z−2 + z−1 + 1

z−2 + z + 4z2
=

1 + z + z2

1 + z3 + 4z4
.

Thus, limz→0 f(z) = 1. Consequently, f has a removable singularity at z0 = 0.

(e) For all z ̸= 0, we can write

f(z) =
z−5 + z−2 + z2

z−2 + z + 4z2
=

1 + z3 + z7

z3 + z6 + 4z7
=

1

z3

(
1 + z3 + z7

1 + z3 + 4z4

)
.

Since the function

g(z) =
1 + z3 + z7

1 + z3 + 4z4

is continuous at z0 = 0, we deduce that f has a third order pole at z0 = 0.

(f) For all z ̸= 0, we can write

f(z) =
z−1 + 1

z−4 + 3
=

z3 + z4

1 + 3z4
.

Thus, limz→0 f(z) = 0. Consequently, f has a removable singularity at z0 = 0.

(g) For all z ̸= 0, we can write

f(z) =
z−7 + 1

1 + z
=

1 + z7

z7 + z8
=

1

z7

(
1 + z7

1 + z

)
.

Since the function

g(z) =
1 + z7

1 + z

is continuous at z0 = 0, we deduce that f has a seventh order pole at z0 = 0.
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