1. Complex numbers algebra.
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Exercise session 1

Compute the cartesian representation.



2. Complex number powers. Let us consider sequences of complex numbers of the form
z, = 207, for every n € N and some zy € C. Describe (with pictures or words) the aspect of
the sequence of points in the complex plane for the following choices of z.

(a) zo =

(b) 2 = poe'® with py = 0.99 and 6, = %.

(c) zo = poe® with py = 0.99 and 6, = ?‘%’6.

(d) 2o = poe'® with py = 0.99 and 6y = %6.
)

20 = poe'® with py = 0.99 and 0y = (3 — V5)7 ~ —137'1%%78“,

You may need the help of a computer for this one! See also https://en.wikipedia.org/
wiki/Golden_ angle.

(e

Answer.

(a) Let’s compute the first terms:
=1 zn=-—1, z=—t, z3=1 z4=1.
We notice the sequence is periodic with period 4.

1 if n =4k,

1 ifn=4k+1,
i ifn=4k+2,
1 if n =4k + 3.

(b) This sequence will generate four spirals turning counterclockwise.

po =0.99, 6y = 91°
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(c¢) This sequence generates four spirals turning clockwise.


https://en.wikipedia.org/wiki/Golden_angle
https://en.wikipedia.org/wiki/Golden_angle

po =0.99, 6y = 89°
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(d) This sequence generates six spirals turning counterclockwise.
po =0.99, 6y = 61°
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-0.5¢

(e) This sequence generates a beautiful pattern often found in nature.
po =0.99, by = 137.5078°
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-0.5}

These images were generate with the following MATLAB code you can play with.

clc
close all;

[

% define parameters



rho0 = 0.99;

% thetalO = 91 % pi / 180;
% theta0d = 89 » pi / 180;
% theta0 = 61 = pi / 180;
thetal0 = (3-sgrt(5)) *pi;

o\

define sequence
rho0 = (cos(thetal) + 1i % sin(thetal));

0 =
=@ (n) z0"n;

z
zZ
% plot the sequence

numberOfPointsToPlot = 500;

figure (1)
title(['s$\rho 0 = $',num2str(rho0),', $\theta.0
=',num2str (theta0x180/pi), ' "\circ$'], ...
'interpreter', 'latex'), set(gca, 'FontSize', 22),
axis equal, hold on,
set (gcf, 'units', 'normalized', 'OuterPosition', [.5 .3 .5 .71])

for n = l:numberOfPointsToPlot

zn = z(n);

plot (real(zn), imag(zn), 'b.');

%$pause (1le-10); S%Suncomment for animation
end

hold off

3. Euler’s formula.

(a) For z € R, explain by pictures why

cos(z) = %, (1)
sin(z) = & _2,6 2)
7

(b) For a, 8 € R, using that e*®e’® = €®+5) show that
cos(a + ) = cos(a) cos(f) — sin(«) sin(3),
sin(a + ) = sin(«a) cos(B) + cos(a) sin(5).

(¢c) We now extend Equations (1) and (2) to arbitrary complex numbers z € C. Show that
these equations lead to the formula

Vz€C: €% =cos(z) +isin(z).

Answer.

(a) Here are two constructions that show these formulas. As a starting point, we have that
if 2 € R, e is the complex number on the unit circle at oriented angle § = 2. Then,
scaling and adding such points works as with vectors of R2.
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(b) We develop both sides:

e = (cos(a) + isin(a))(cos(B) + isin(3))
= (cos(a) cos(B) — sin(a) sin(f)) + i(cos(a) sin(B) + sin(a) cos(B3)).
eilatB) _ cos(a + ) +isin(a + 3)

We then conclude by identifying real and imaginary parts: that is Re(e®e”?) = Re(e?@9)
and Im(e®e”?) = Im(e@+9).

(c) Recall the Taylor expansion of the exponential of a real number x:
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If we evaluate this expression in iz for any z € C:

<% (iz)k_l A SR A AP LR Ao
T B TR B TR 1

2 3 4 5
z 32 42 52
a‘i‘l g‘i‘l I‘i‘lg
L 22 43 1z4 P

= +zz—§—z§—|— E—l—za—ir...

2 4 3 .5
:1—Z—+z—+-~~+i<z—z—+z—+...) = cos(z) + isin(z).

=14iz+4° + ...

21 4l

The last equality follows from recognizing the Taylor expansion of the cosine and the sine
function.

Then we can find (1) and (2) as follows:

e+ e cos(z) +isin(z) + cos(—z) + isin(—z)
2 2
_ 2cos(z) +isin(z) — isin(z)

N 2

= cos(z),

e —e % cos(z) +isin(z) — cos(—z) — isin(—2)
21 21
isin(z) + isin(z)
21

= sin(z).



