MATH-207(d) Analysis IV
Fxercise session 12

Exercice 1. Compute the Laplace transform of the function f : [0,00) — R such that

f(t):{o forOgtSa' (1)

1 fort > a

Answer. By definition, the Laplace transform of f is defined as

2l = [ rwear= [ et

for all z € C such that the above integral converges. Studying now the convergence of this
integral we deduce that if Rez > 0 then
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The same reasoning implies that if Rez < 0 then
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does not converge. Consequently, the Laplace transform of f, denoted £[f](z) exists for all
z € C such that Rez > 0, and it has the expression
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Exercice 2. Compute the Laplace transforms of the functions
f(t) = e™ cosh(bt), g(t) = e cosh(bt), (2)

where a,b € C.

Answer. Recall that the complex hyperbolic cosine and complex hyperbolic sine functions
can be expressed in terms of complex exponentials as

1 1
cosh(bt) = 5 (e +e™) and sinh(bt) = 5 (e —e™).

In order to compute the required Laplace transforms therefore, let us first introduce, for any
fixed w € C, the function h,: R — C as

h,(t) =™, VteR.



It follows that the Laplace transform of A, is given by

Llh](2) :/0 he,(t)e ™ dt :/0 e“e  dt :/0 e tz—w) dt,

for all z € C such that the above integral converges. Studying now the convergence of this
integral we deduce that if Rez > Rew then

& 1 1
/ e tEw) gt = — (lim e_t(z_“)> = )
0 2 — W \t—oo Z—w

The same reasoning implies that if Rez < Rew then

/OO eft(sz) dt
0

does not converge. Consequently, the Laplace transform of h,,, denoted £[h,](z) exists for all
z € C such that Rez > Rew, and it has the expression

lh)(z) = ——. 3)

zZ— W

Returning now to our original task, let us first consider the function f. By the definition of the
Laplace transform and making use of Equation (3), we have that

= / f(t)e ™ dt = / e cosh(bt)e™"* dt
0 0
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for all z € C such that Rez > max{Re(a + b), Re(a — b)}. Next, let us consider the Laplace
transform of the function g. In this case, making use of Equation (3), we have that

lgl(z) = /0 " g(t)et dt = / " et sinh(bt)et dt

/ at bt —tz dt — 1/00 eate—bte—tz dt
2 0
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for all z € C such that Rez > max{Re(a + b), Re(a — b)}. ]



Exercice 3. Solve the ordinary differential equation

y'(t) +ay(t) = f(t), t>0, (4)

y(0) =1 (5)

where f(t) = te™!. You are allowed to use all Laplace transforms that have been computed in
the lecture or in previous exercises.

Answer. Applying the Laplace transform for both sides of the ordinary differential equation

(ODE), and making use of the linearity of the Laplace transform as well as its derivative
property, we obtain that

2Y (2) —y(0) + a¥Y'(z) = £[f](2).
Here, Y denotes the Laplace transform of y. Using the initial condition, we further deduce that
1 1
Y(2)= £ .
() = 2l +

Recall that inverse Laplace transform of the function G(z) = (2 + a)™! is given by (see, e.g.,
the previous exercise)

L£G)(t) = e ™ = g(2).

Consequently, the linearity of the Laplace transform combined with the convolution theorem
for the Laplace transform implies that

y(t) = SYI(t) = g+ f + S CI(E)
- / a(s)F(t — 5) ds + (1)
= /t e (t—s5)e 27 ds 4 e

t t
— te—St/ e—ase?)s ds — e—3t/ e—asse?;s ds + e—at'
0 0

There are now two situations.
Case: a = 3. In this case, the above expression considerably simplies and we obtain

t t
y(t) == te_?’t/ 1ds— e_3t/ sds—+e ™
0 0

— 42,73t _ %€3tt2 4Bt

[——ry —3t
= —e 3t
26 +e

Case: a # 3. In this case, we obtain, on the one hand, that

t -3 -3 -3 - -3
0 3—a =03 g 3—a 3—a 3-—a

On the other hand, the change of variables r = s(3 — a) and integration by parts yields that

¢ t 1 t(3—a)
e_3t/ e %se? ds = 6_3t/ 5379 (g = —e_3t/ re’ dr
0 0 (3 - a)2 0

= ﬁe‘gt ("= (¢(3 —a) — 1) + 1)

te—at e—at e—3t
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Consequently, the solution to the ODE in the case a # 3 is given by

te_“t te—3t te—at e—at 8_3t ot
y(t) = - - - + +e

3—a 3-—a 3—a (B3—a)? (3—a)?
t€—3t e—at 6—3t ot
T3 . Boar Boap ¢
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Exercice 4. Solve the ordinary differential equation
y'(t) +y(t) +24(t) = f(t), t>0, (6)
y(0) =1, y(0)=1. (7)

in the two cases
(a) f(t) =0,
(b) f(t) =e.

You are allowed to use all Laplace transforms that have been computed in the lecture or in
previous exercises.

Answer. Applying the Laplace transform for both sides of the ordinary differential equation
(ODE), and making use of the linearity of the Laplace transform as well as its derivative
property, we obtain that

Y (2) = 29(0) — ¢/ (0) + Y (2) + 22Y (2) — 2y(0) = £[f](2).
Here, Y denotes the Laplace transform of y. Using the initial conditions, we further deduce

that

1 3+ z
_ g .
2242241 [f](z)+22+22+1

Y(z) = (8)

The goal now is to take the inverse Laplace transform on both sides of Equation (8). In order
to prepare for this, let us first notice that we can write
3+z 1+2 n 2 1 n 2
224+22+1  22422+1 2242241 241 2242241

Let us therefore introduce the functions G(z) = (2 +1)7! and H(z) = (2% + 2z + 1)~!. Recall-
ing the Laplace transforms that have been computed in previous exercises (see, in particular
Exercise 2 above and Exercise 3 from Sheet 11) , we deduce that

LHGI(t) =e "t :i=g(t), and L£'[H]|(t) =te " := h(t).

Returning now to Equation (8), we make use of the linearity of the Laplace transform together
with the convolution theorem to deduce that

y(t) = LY)(t) = hx [+ L7 [G](t) + 2&7 ' [H](1)

_ /0 h(s)f(t = 5) ds + g(t) + 2h(1)

= /t h(s)f(t —s)ds+e "+ 2te™.
0



It remains to compute the convolution. Once again, there are two cases:
Case: f = 0. In this case, the convolution is just zero and we obtain that

y(t) =e " +2te”".

Case: f(t) = e In this case, the convolution can be written as

t t t t
/ h(s)f(t—s)ds = / se*e 3% ds = / se*e 309 (s :e3t/ se* ds
0 0 0 0

1 2t
:—e_3t/ re” dr,
4 0

where the last step uses the change of variables r = 2s. Using now integration by parts yields

t 1 2t 1
/ h(s)f(t—s)ds= zleBt/ re’ dr = Z—le’& (e (2t — 1) + 1)
0 0
1 1
= Ze_t (2t — 1) + 16_3t.
Consequently, the solution to the ODE in the case f(t) = e~ is given by

1 1
y(t) = e " (2t —1) + Z€—3t +e 4 2te™!

4
10, ., 03 1
= 4te +4e +4e .
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Exercice 5. Find a solution to the ordinary differential equation
y"(t) +y(t) =te, (9)
y(0)=0, ¥(0)=0, y"(0)=1 (10)

via the Laplace transform. You are allowed to use all Laplace transforms that have been com-
puted in the lecture or in previous exercises.

Hint: The following identity might be useful:
1 1 z

B4z oz 241

Answer. Applying the Laplace transform for both sides of the ordinary differential equation
(ODE), and making use of the linearity of the Laplace transform as well as its derivative
property, we obtain that

2Y (2) = 2%y(0) — 2y'(0) — y"(0) + 2Y (2) — y(0) = £[f](2).
Here, Y denotes the Laplace transform of y and we have introduced the function f(t) = te

Using the initial conditions, we further deduce that

1 1
23 + ZS[f](z) * 2B+ 2

—t

Y(z) = (11)

The goal now is to take the inverse Laplace transform on both sides of Equation (11). In order
to prepare for this, we require the inverse Laplace transform of the function G(z) = (2*+ 2)~L.

>



To this end, let us first notice the Laplace transform of the cosine function is given by

z
£ = :
[cos](2) e
Moreover, the Laplace transform of 1 is given by
1
£[1 =—.
1)) =
Since
1 z 1

2_22+1:z3+z’

we deduce from the linear property of the Laplace transform that the inverse Laplace transform
of G is given by

g(t) :== £7G](t) = £ [[1]] (¢) — £ [L[cos]] (£) = 1 — cos(t).

Returning now to Equation (11), we make use of the linearity of the Laplace transform together
with the convolution theorem to deduce that

y(t) = LHY]() = (g% f)(t) +g(t)
= [ ot =5) a5+
_ /0 (1= cos(s)) (¢ — s)e=) ds + 1 — cos()
= /0 t(t —s)e 9 ds — /0 t cos(s)(t — s)e” %) ds + 1 — cos(t). (12)

The first integral above can be computed using a change of variables w = t — s followed by
integration by parts. This yields

t 0 t
/ (t—s)e =) ds = —/ we ™ dw = / we " dw=1-—e"(t+1).
0 ¢ 0

The second integral can be computed with similar arguments if we write the cos function in
terms of exponentials. We find

t
/ cos(s)(t — s)e" (7% ds
‘ t t
= tet/ cos(s)e® ds — et/ cos(s)se’ ds
0 0

t _is —is t _is —1is
_ e’ +e _ e 4+ e
:tet/ —esds—et/ —se’ds
0 2 0 2

1t 1t 1t IR L
= tet <§/ eS8 ds + 5/ e’ ds> — et <§/ seT ds + 5/ se®™ " ds> .
0 0 0 0

We need to compute four integrals. The first two of the remaining integrals are standard:

t t+it t t—it
’ e -1 » e " -1
et ds = ———, e ds = ——.



This leads us to

ettt — 11—

I I 1—g)et™ — 1+ 1+
_/ es—i-zs dS+—/ eSS dSZ( 2)6 +Z+< +Z)
0 0

2 2 4 4
et—i-it + et—it _ Z'et—i-it + iet_“ 1

tezt + e—zt N tezt _ e—zt 1

=c € — =

4 43 2

_ 6tcos(t) N ;sin(t) 1

e .
2 2 2

The other two integrals can be computed similar as above, or using integral by parts:

t ¢
; 1 , 1 .
/ 55+ qg = .[365(1+2)]§26 B / S+ g
0 1+ 1+ ),
1 . 1 ,
— S(1+Z) s=t _ S(1+’L) s=t
1+ i[se ]s:O (1 T Z_>2 [6 ]s:O
= L et(+) ;et(l—o—i)
141 (1+414)2
A similar calculation yields
t ¢
; 1 , 1 4
/ s’ dg = ,[ses(l”)]gig — : / 511 Jg
1 A 1 .
= s(1—i)1s=t _ s(1—1)1s=t
- 1 _ Z,[S@ ]SZO (1 _ 2)2 [6 ]5:
— t(1—i) _ 1 t(1—1)
1—q (1—1)? ’
This leads to
t ) t 4
/ se’ " ds +/ se® " ds
0 0
= Ltet(lJri) _ #et(1+i) + Ltet(lfi) B 1 (H0)
142 (1+41)2 1—13 (1—1)2
1—1 , 1—21—1 . 1434 ) 149 —1 '
= Tltet(lﬂ) _ 42 et1+1) ;Ztet(l—z) it 42 (L)
et1+9) 4 ot(1=17) et+d) _ pt(1=i)  ot(144) _ pt(1—i)
=1 4+t _

2 21 21
= e'tcos(t) + e'tsin(t) — e’ sin(t).

Putting these together, we get

t

/ cos(s)(t — s)e” 79 ds
0

i (etcos(t) N (sin(t) 1

2 ¢T3 T3

_> — e_t% (et cos(t) + e'tsin(t) — ' sin(t))



Returning now to Equation (12), we obtain that

y(t) = /Ot(t —5)e (79 ds — /Ot cos(s)(t — s)e” 7% ds + 1 — cos(t)

in(t t
=1—e"(t+1)— @ + ée_t + 1 — cos(t)
t in(?
=2 e_t(§ +1)— sin(t) _ cos(t).

Exercice 6. Solve the initial value problem

")y =eTt, t>0,
u(0) = u'(0) = u"(0) = «""(0) = 0.

N

Answer. Applying the Laplace transform for both sides of the ordinary differential equation
(ODE), and making use of the derivative property, we obtain that

AU (2) - 2u(0) = 2(0) — =(0) — w"(0) = - i -

Here, we denote by U the Laplace transform of the solution function u, and we have used the
fact that the Laplace transform of the function f(t) = e* is given by £[f](z) = (1 + z)~".
Applying now the initial conditions yields the algebraic equation

U(z) = ﬁ (13)

4

Only possible solution involves the convolution formula. We know that 27 is the Laplace

transform of ¢3/6. By the convolution formula,

1 t eft t
u(t) = 6/ s "9 ds = ?/ s’e*ds.
0 0

We use integration by parts several times:

t
u(t):/ s3etds
0

t
= 3! — 3/ s?e’ds
0

¢
= t3e! — 3% + 6/ se’ds
0

t

= t3e! — 3t%e! + 6te’ — / e’ds
0

= t3e! — 3t%e’ + 6te’ — 6e' + 6.

Putting this together, we find the solution

—t

u(t) = c (t°e" — 3t%e’ + Gte' — Ge' +6)

6
.

= — —+4t—1+4et
5 2+ +e



Alternatively, we can use the partial fraction decomposition. Before proceeding with the
application of the inverse Laplace transform let us first compute the partial fraction decompo-
sition of the term on the right. We begin with the ansatz

which then yields the equation
1=A2(1+2)+B2*(1+2)+Cz(1+2)+ D(1+2) + Ez".

Substituting z = —1 immediately yields E' = 1 while substituting z = 0 yields D = 1. To obtain
the remaining constants A, B, C', we can simply substitute z = 1, +2 to obtain the system of
equations

—2=2A+2B+2C
—18 =24A +12B +6C
—14=8A—-4B+2C.

Combining the second and third equation we easily deduce that
—18+42=24B — B=1.

Further more, combining the first and thiird equation yields
12=-6A+6B — A=-1.

Consequently, we obtain that C' = —1. We thus conclude that

SRV RN DS NS S
2_24(1—|—z)_ z 22 2 2 14z

Applying the inverse Laplace transform and making use of it’s linearity, we deduce that

2 t3 .
)= —14+t——+—+e.
u(t) + 2+6+e

This is the solution to the differential equation. [ |

Exercice 7. Let 22+ pz 4 ¢ be a polynomial with real coefficients p, ¢ € R and roots z;, 2z, € C.
Use the assumption that p,q € R to show the following:

e The imaginary parts of the roots satisfy Sz; = —Szs.

e If any of the roots is not real, then both roots are not real, and then their real parts
satisfy Rz; = Rzs.

Answer. We write z; = 1 4+ iy; and zo = x5 + iys. Since 21,25 € C are the roots of the
polynomial, we have

Prprtqg=(2—2)(z—2) =2+ (21 + 22)2 + 2120.

e Since p € R, we have z; + 25 € R, and so we conclude y; = —y,. That shows the first
assertion.



e We obviously have
q= 212 = (1172 — Y1y2) + (T1y2 + 2011
Since ¢ € R, we see that
0= 21y2 + T2y1 = T1Y2 — TaY2 = Ya(T1 — T2).

If one of the roots is not real, then this means that y; # 0 or y, # 0. But then y; = —y»
implies that both y; # 0 and y # 0. Hence 0 = yo(z1 — x2) can only hold if 21 = xs.

Exercice 8. Let p,q € R. Find the Laplace transform of any solution of
y' +py +ay=f.
Use this approach to find the solution in the special case f = 0 with initial conditions y(0) =0
and ¢/(0) = 2 and with parameters p =0 and ¢ = 1.
Answer. Applying the Laplace transform to the differential equation, we find
2Y (2) = y(0)z = y/(0) + p2Y (2) — py(0) + Y (2) = F(2).
Isolating Y'(z) yields
(2 +pz+q) Y (2) = F(2) +y(0)z +y/(0) + py(0)

and so
y(z) = L&) T30z 4y (0) +py(0)
224+ pz+q
In the special case f = 0 with y(0) = 0 and 3'(0) = 2 and with p = 0 and ¢ = 1, we thus have
2 2 2
Y(z)=

Zipitq 241 (z+i)(z—i)

We check that 1/(z +4) and 1/(z — i) are the Laplace transforms of e and e, respectively.
Via the convolution formula,

v . . to 1 . @it —e
y(t) = 2/ e =9 — 26”/ e’ =2¢"— (¥ — 1) =2———— = 2sin(t),
0 0 21 21

which is the solution. Remark: more generally, 2*> + pz + q = (2 — 21)(z — 29) has two roots
21,20 € C. The solution can always be found using the approach above, via the convolution
formula. [ |

Exercice 9 (Extra). The n-moment of a function f : [0,00) — R is defined as

[ = /OOO " f(t) dt, (14)

provided that this integral converges. Show that if all n-th moments of f converge and

o0
sup/ " f(t)] dt = v < o0,
neN Jo

then

el =3 Tl e (15)

n!

n=0

10



Answer. On the one hand, recall that the Laurent series expansion at zy = 0 for the complex
exponential takes the form of an infinite sum

oo

explz) =32 (16)

which is valid for all z € C. On the other hand, by definition of the Laplace transform,

_ /0 T pwet dt,

for all z € C such that the above integral converges. Plugging in Equation (16) in the expression
for the above Laplace transform, we deduce that

o) = [ >t = [ e e e

n=

We would now like to interchange the infinite summation and the integral. Indeed, if can do
that, then

Z/ e ae =Y (-1 Z [ e di - Z( A

However, it is not immediately obvious that we can exchange the integral and the infintie sum
because the linearity of the integral a priori only applies to a finite sum.

We technically must justify the exchange of sum and integral. To simplify the notation, we
introduce the functions {g, }nen defined as

We want to show that

> [Cawa= [ o

This equation follows from Fubini’s theorem if we can show that the infinite sum and integral
is absolutely convergent. The latter is seen from

2"

Z/ |gn ()| dt = Z" / | f(t |dt<2—y—1/exp(|z|)

This justifies why we can exchange limit and integral. [ |

11



