MATH-207(d) Analysis IV
Fxercise session 10

Exercice 1. Compute the following integral
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Answer. Using the identity sind = —i(e? — e7%)/2 and the parameterisation of the unit
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Let the function f be defined as
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Clearly, the only singularity of f inside the unit disc is located at zy = i(v/5 — 2). Moreover,
this singularity is a simple pole with residue given by
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We therefore conclude by the residue theorem that

for all z # (V5 + 2).
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Exercice 2. (a) Let f: R — R be a continuous function such that

/!f(a:)|d:r;<oo and /|:I;f(x)|dx<oo,
R R

and define the function g(z) = xf(z) for all x € R. Show that
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(b) Using the above result, compute the Fourier transform of the function
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Hint: Try to apply the inverse Fourier transform and make use of the integral
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which has already been computed in a previous exercise sheet.

Answer.

(a) Notice that
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By definition, the Fourier transform of g is given by
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We want to pull out the derivative from the integral. We observe that
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We should emphasise here that in order to be completely rigorous, the interchange of
the limit and the derivative with respect to o has to be mathematically justified. Exact
conditions under which the limit and the derivative can be interchanged are beyond the
scope of the current lecture. For the current problem however, the hypotheses that

/lf(a:)|d:1:<oo and /|:pf(:p)|dg;<oo
R R

together with continuity of f consitute sufficient conditions to justify the interchange.

(b) Let us define the function f: R — R via

fla)=et
First, the Fourier transform of g(z) = = f(x) satisfies
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Next, we want to find the Fourier transform of f. From the results of the previous exercise
sheet, we also know that
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As this identity shows, the last expression is the inverse Fourier transform of the function
h: R — R given by

Consequently,

It follows that

We conclude that
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This is the desired result.

Exercice 3. Let 0 # 0 be a real number and let f: R — R be defined as

1 2

fa) = e m

The goal of this task is to compute the Fourier transform of the Gaussian function f.



(a) Show that
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(b) Use results from complex analysis to establish that
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(c) Use polar coordinates to compute the integral
o 1 2 2
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(d) Use the results of the above computation to finally deduce the Fourier transform f

Answer.

(a) By the definition of the Fourier transform, we have
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We now use the change of variables z = z 4 iao? to obtain
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(b) The first limit of integrals expresses an integral along the shifted real line iao? + R. We
want to show that this agrees with the integral over R. Consider the rectangle R(Y) in
the complex plane defined as

RE =RPURFPURP URY  where
R = {z =z +iac®: z € [-L, L]}

RgL) ={z=L+iy:ye€ [O,aaQ]}

RgL) ={z=2:a€(-L,L)}

R ={z=—L+iy:ye0,a0?}.



Obviously, R forms a closed simple differentiable curve for any choice of L > 0. More-
over the function f: C — C defined as

fz)=e 5

is holomoprhic everywhere on C. Consequently, by Cauchy’s theorem, we deduce that
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Using now the definition of the rectangle R and the function f, we see that we must
have
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In particular,
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To obtain the desired result, we must argue that the integrals [; and Iy approach zero in
the limit L — oo. Notice that this integrals can be expressed as
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Before we proceed, take a look at the exponents in those integrals: as L gets very, very
large, the exponents will be —L?/(20?) and some smaller pertubation of that. As L grows
to infinity, the exponentials will decay towards zero.

To make this observation more formal, notice that if z € C is a complex number of the
form z = +L + itac? for ¢ € [0,1] then it holds that
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Consequently, we can deduce that
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In particular, lim;_, [; = lim;_,o Io = 0, as claimed. We conclude that
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(c) We make the simple observation
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This is a radial integral. We can now use the polar coordiantes change of variables
x = rcos(f) and y = rsin(f) to deduce that the above two-dimensional integral simplifies
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Here, we have used the fact that

We thus conclude that
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(d) Collecting all of the above results, we finally obtain that the Fourier transform J?is given
by
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Remark: We have discovered the very cool fact that the Fourier transform of a Gaussian
is also a Gaussian! Not only this, we have discovered that the parameter ¢ that appears
within the exponential and measures the variance of the Gaussian is inverted in the
Fourier transform. This means that if the original Gaussian has a very small variance,
then the Fourier transform Gaussian has a huge variance! This fact is closely related to
the famous Heisenberg uncertainty principle in quantum physics.

Exercice 4. Use the various properties of the Fourier transform given in Theorem 15.2 of the
textbook together with the table of Fourier transforms given below to compute the following
Fourier and inverse Fourier transforms.



(a) Let f: R — R be defined as

Compute the Fourier transform f
(b) Let g: R — R be defined as
g(z) =227 g £o.
Compute the Fourier transform g.
(c¢) Let h: R — R be defined as

2 —2r+1

hw) = (22 — 22 + 2)%°

Compute the Fourier transform h. Hint: Find a relationship between the Fourier trans-
form of an integrable function f(-) and the Fourier transform of the translated function
f(- = ¢o) for any ¢y € R.

Answer.

(a) Notice that we can write f in the form

f(z) =e“g(ox), where
B 1
- B2+ 22

Consequently, by taking advantage of the dilation and phase properties of the Fourier
transform (see Property (v) Theorem 15.2 of the course textbook), we deduce that

Floy= g (“4)

An expression for the Fourier transform of the function g can be found in the table (see

Entry 6). We conclude that
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(b) The trick is to use the differentiation property of the Fourier Transform as demonstrated
in Exercise 2 above (alternatively, see Property (iv) Theorem 15.2 of the course textbook).
We define
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Now,
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We take the Fourier transform on both sides:

(ia)? fo(z) = —268° fo(z) + 48%g(x)

Isolating g, we find

(262 — a?) fo(z) = 48"4(x)

It remains to find the Fourier transform of fj, which can be read from the table (see Entry
9) or obtained using the results of Exercise 3 above. This brings:
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Following the hint provided in the question, let f: R — R be an integrable function, let
¢o € R be any real number, and define g: R — R as

9(x) = f(z — ).

Then the Fourier transform of ¢ is given by

/g\(a) = /Oo g(l’)e_ioﬂf dxr = /_OO f(l‘ _ Co)e—iax dz.
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Using the change of variables y = © — ¢y, we obtain

30) = / f(y)eiowren) dg = g-iaa / f)e ™ dr = e f(a).  (2)

Returning now to the Fourier transform of the function h, we see that we can write

(x —1)2 x?

h(xz) = TESEEEE =g(x—1) with g(x)= A+

The Fourier transform of the function g can now be read from the table (see Entry 10).
We therefore deduce that

ha) = e G(a) = ieia\/% (1—af)e .



