
MATH-207(d) Analysis IV
Exercise session 6

Exercice 1. For each of the following functions compute the Laurent series in the given z0,
determine its region of convergence, specify the nature of the singularity and report the residue.

(a) f(z) = z cos
(
1
z

)
in z0 = 0.

(b) f(z) = e1/z sin
(
1
z

)
in z0 = 0

(c) f(z) = ez

(z−1)2
in z0 = 1

(d) f(z) = sin z
(z−π)2

in z0 = π.

(e) f(z) =
√
z

(z−1)2
in z0 = 1

Answer.

(a) The Taylor expansion of the cosine around 0 is the series

cos y =
∞∑
n=0

(−1)n

(2n)!
y2n = 1− 1

2
z2 +

1

24
z4 − . . . ,

valid for all y ∈ C. Using the replacement y = 1
z
, where z ∈ C is not zero, we get

z cos

(
1

z

)
= z

∞∑
n=0

(−1)n

(2n)!

(
1

z

)2n

=
∞∑
n=0

(−1)n

(2n)!

1

z2n−1

= z − 1

2
z−1 +

1

24
z−3 − . . . , ,

valid for all z ∈ C \ {0}. Hence, the Laurent series for f converges for all z ∈ C\{0}, i.e.
the radius of convergence is infinity. Very explicitly, the coefficients are

cn =


1 n = 1
1/(−n+ 1)! n negative odd
0 otherwise.

Regarding the nature of singularity z = 0, since there are infinitely many terms with
negative powers of z in the Laurent series we conclude that this singularity is essential.

The residue is equal to the the coefficient in front of the z−1 term of the Laurent series:
c−1 = −1

2
(obtained for n = 1).
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(b) We can use the Taylor expansions around y = 0 for the functions

ey =
∞∑
n=0

yn

n!
, sin(y) =

∞∑
n=0

(−1)n
y2n+1

(2n+ 1)!
.

With y = 1/z to obtain:

f(z) = e1/z sin

(
1

z

)
=

(
1 +

1

z
+

1

2!z2
+ . . .

)(
1

z
− 1

3!z3
+ . . .

)
=

1

z
+

1

z2
+ . . .

Alternatively, we use the Taylor expansion of the product g(y) = ey sin(y) around y = 0.
One observes

g(y) = ey sin(y) = ey
eiy − e−iy

2i

=
e(1+i)y − e(1−i)y

2i
=

e(1+i)y

2i
− e(1−i)y

2i
.

The product’s derivatives are

g(n)(y) = (1 + i)n
e(1+i)y

2i
− (1− i)n

e(1−i)y

2i
.

The Taylor series y = 0 thus equals

g(y) =
∞∑
n=0

1

n!

(
(1 + i)n

2i
− (1− i)n

2i

)
yn.

We substitute y = 1
z
whenever z is non-zero. Thus:

f(z) =
∞∑
n=0

1

n!

(
(1 + i)n

2i
− (1− i)n

2i

)
z−n.

Very explicitly, the coefficients are

cn =

 0 n > 0
1

(−n)!

(
(1 + i)−n

2i
− (1− i)−n

2i

)
n ≤ 0

Since there are infinitely many summands with negative powers, we conclude that z0 = 0
is an essential singularity. The residue is equal to 1 (coefficient with 1/z term) and the
series is convergent for all z ∈ C\{0}. (0 is the only singularity, and the Taylor series
used are convergent for all y).

(c) One way of solving this problem uses the Taylor expansion of the exponential function
around z0 = 1:

ez =
∞∑
n=0

e

n!
(z − 1)n .

Thus,

ez

(z − 1)2
=

e

(z − 1)2

∞∑
n=0

(z − 1)n

n!
= e

∞∑
n=0

(z − 1)n−2

n!

=
e

(z − 1)2
+

e

(z − 1)
+

∞∑
n=0

e

(n+ 2)!
(z − 1)n.
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The Taylor series for ey converges for all y ∈ C. Therefore, for the Laurent series of f we
must only exclude the singularity z = 1. Hence, the Laurent series for f converges for all
z ∈ C\{1}, i.e., the radius of convergence is infinity.

Regarding the nature of singularity z = 1, since the highest negative power of (z − 1) is
2, we conclude that this is the pole of order 2.

Regarding the residue c−1, it is equal to coefficient with term (z − 1)−1 of Laurent series
which is e.

(d) We know the Taylor expansion

sin y =
∞∑
n=0

(−1)n

(2n+ 1)!
y2n+1,

valid for all y ∈ C. We substitute y = z − π, which yields

sin (z − π) =
∞∑
n=0

(−1)n

(2n+ 1)!
(z − π)2n+1 .

We get

f(z) =
sin(z)

(z − π)2
= −sin(z − π)

(z − π)2
=

∞∑
n=0

(−1)n

(2n+ 1)!
(z − π)2n−1

=
(z − π)−1

1!
+

(z − π)1

3!
+

(z − π)3

5!
+ . . . .

From the expansion, we conclude that z0 = π is pole of order 1 and c−1 = −1. Since the
Taylor series converges for all y, the region of the convergence for Laurent series of f is
C\{π}.

(e) We will first find the Taylor expansion for g(z) =
√
z at z0 = 1. Since the coefficients of

the Taylor expansion are g(n)(z0)
n!

, we must determine the n-th derivative. We remember
that g(z) =

√
z = e(1/2) log z is holomorphic on

C \ {z ∈ C : Re z ≤ 0, Im z = 0}.

Hence all the derivatives in z0 = 1 exist. We get

g′(z) =
1

2
z−1/2,

g′′(z) = −1

4
z−3/2,

g′′′(z) =
3

8
z−5/2,

g(iv)(z) = −15

16
z−7/2,

...

g(n)(z) = (−1)n+11× 3× 5× · · · × (2n− 3)

2n
z−(2n−1)/2, n = 2, 3, 4, . . .

Therefore, the expansion of g(z) at z0 = 1 is

g(z) = 1 +
1

2
(z − 1) +

∞∑
n=2

(−1)n+11× 3× 5× . . .× (2n− 3)

2n
(z − 1)n

n!
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Finally, dividing by (z − 1)2 and rearranging the indices in the summation gives the
Laurent series for f at z0 = 1

√
z

(z − 1)2
=

1

(z − 1)2
+

1

2(z − 1)
+

+
∞∑
k=0

(−1)k+11× 3× 5× . . .× (2k + 1)

2k+2(k + 2)!
(z − 1)k.

To determine the convergence region for the Laurent series, first we must determine the
region of convergence of Taylor series of g.

Recall that for the Taylor series to converge we need

|z − 1| < lim
n→∞

∣∣∣∣ cn
cn+1

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ 1×3×5×...×(2n−3)
2nn!

1×3×5×...×(2n−3)×(2n−1)
2n+1(n+1)!

∣∣∣∣∣
= lim

n→∞

2n+ 2

2n− 1
= lim

n→∞

(
1 +

3

2n− 1

)
= 1

Then, for f we also need to exclude the singularity z = 1. Thus, we have that the Laurent
series converges for 0 < |z − 1| < 1, i.e. the radius of convergence is 1.

Alternatively, we can also argue that the Taylor series converges in the largest disk around
z0 over which

√
z is holomorphic. That largest disk has radius 1. Again, this shows the

radius of convergence 1.

Regarding the nature of singularity z = 1, since the highest negative power of z − 1 in
the expansion is 2 we conclude that this is a pole of order 2.

Finally, inspecting the Laurent series we find c−1 =
1
2
.

■

Exercice 2. Compute at least the singular part of the Laurent series of the following functions
determine its region of convergence, specify the nature of the singularity and report the residue.

(a) f(z) = sin z
sin(z2)

in z0 = 0.

(b) f(z) = 1

cos2(π
2
z)

in z0 = 1

(c) f(z) = log(1+z)
sin(z2)

in z0 = 0

(d) f(z) = sin z
z(ez−1)

in z0 = 0

Answer. Ces exercices sont plus difficiles que les précédents.

(a) The numerator sin(z) and the denominator sin(z2) are holomorphic close to z0 = 0. Their
Taylor series around 0 are already known:

sin(z) = z − z3

3!
+

z5

5!
− . . .

sin(z2) = z2 − z6

3!
+

z10

5!
− . . .
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We observe

f(z) =
1

z

z sin(z)

sin(z2)︸ ︷︷ ︸
=:g(z)

.

By construction,

g(z) :=
z2 − z4

3!
+ z6

5!
− . . .

z2 − z6

3!
+ z10

5!
− . . .

=
1− z2

3!
+ z4

5!
− . . .

1− z4

3!
+ z8

5!
− . . .

.

So the first non-zero coefficient of the Laurent series of g must be g(0) = 1. It follows that
f(z) = g(z)/z has a Laurent series at z0 = 0 with first non-zero coefficient c−1 = g(0) = 1.
In particular, it is a pole of order 1.

To determine the region of convergence, we have to exclude all other singularities of f .
The additional singularities are

sin
(
z2
)
= 0 ⇐⇒ z = ±

√
kπ, k ∈ Z

The singularities closest to 0 are ±
√
π and ±

√
−π = ±i

√
π which means that the Laurent

series converges for all z satisfying 0 < |z| <
√
π, i.e. the radius of convergence is

√
π.

(b) The denominator cos2(πz/2) has a Taylor series around z0 = 1. We do not know its
coefficients yet and just write

g(z) := cos2(πz/2) = c0 + c1(z − 1) + c2(z − 1)2 + . . .

We will determine these terms as needed. We already know that c0 = g(1) = 0 and

g′(z) = 2 cos(πz/2)(−1) sin(πz/2)
π

2
,= −π · cos(πz/2) sin(πz/2),

g′′(z) =
π2

2

(
sin2

(πz
2

)
− cos2

(πz
2

))
.

Hence c1 = g′(1) = 0 and c2 = g′′(1) = π2/2. Hence

g(z) = c2(z − 1)2 + c3(z − 1)3 + . . .

It follows that

h(z) =
(z − 1)2

cos2(πz/2)
=

(z − 1)2

c2(z − 1)2 + c3(z − 1)3 + . . .
=

1

c2 + c3(z − 1) + . . .

is holomorphic at a neighborhood of z0 = 1. But then f(z) = h(z)/(z − 1)2 must have a
pole of order 2 at z0 = 1.

To determine the radius of convergence, we need to find the largest disk around the
singularity at z0 = 1 that does not touch any other singularity. The singularities are the
zeros of the denominator:

cos
(π
2
z
)
= 0 ⇐⇒ π

2
z =

π

2
+ kπ ⇐⇒ z = 1 + 2k, k ∈ Z

Since the next singularities from the left and the right of z0 = 1 are −1 and 3, the Laurent
series converges for all z that satisfy 0 < |z− 1| < 2 (draw it in the complex plane, it will
be more clear).
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We determine the residual c−1 of f at z0. That is the c1 coefficient of h at z0. We compute
the derivative:

h′(z) =
(z − 1)2

cos2(πz/2)
=

2(z − 1) cos2
(
π
2
z
)
+ π(z − 1)2 cos

(
π
2
z
)
sin

(
π
2
z
)

cos4
(
π
2
z
)

=
(z − 1)

cos
(
π
2
z
) ·

2 cos
(
π
2
z
)
+ π(z − 1) sin

(
π
2
z
)

cos2
(
π
2
z
) = 0.

(c) This is similar to the Laurent series of this exercise. The numerator log(z + 1) and the
denominator sin(z2) are holomorphic close to z0 = 0. Their Taylor series around 0 are
already known:

log(z + 1) = z − z2

2
+

z3

3
− . . .

sin(z2) = z2 − z6

3!
+

z10

5!
− . . .

We observe

f(z) =
1

z

z log(z + 1)

sin(z2)︸ ︷︷ ︸
=:g(z)

.

By construction,

g(z) :=
z2 − z3

2
+ z4

3
− . . .

z2 − z6

3!
+ z10

5!
− . . .

=
1− z

2
+ z2

3
− . . .

1− z4

3!
+ z8

5!
− . . .

.

So the first non-zero coefficient of the Laurent series of g must be g(0) = 1. It follows that
f(z) = g(z)/z has a Laurent series at z0 = 0 with first non-zero coefficient c−1 = g(0) = 1.
In particular, it is a pole of order 1.

To determine the region of convergence, we have to exclude all other singularities of f .
We already now from real analysis that the Taylor series of log(1 + z) at z0 = 1 has
convergence radius 1. The singularities of the denominator are

sin
(
z2
)
= 0 ⇐⇒ z = ±

√
kπ, k ∈ Z

All these singularities are already further away from 1 than the singularity of the numer-
ator. We conclude that the radius of convergence is 1.

(d) This is similar to the Laurent series of this exercise. The numerator sin(z + 1) and the
denominator z(ez − 1) are holomorphic close to z0 = 0. Their Taylor series around 0 are
already known:

sin(z) = z − z3

3!
+

z5

5!
− . . .

z(ez − 1) = z

(
z +

z2

2!
+

z3

3!
+ . . .

)
= z2 +

z3

2!
+

z4

3!
+ . . .

We observe

f(z) =
1

z

z sin(z)

z(ez − 1)︸ ︷︷ ︸
=:g(z)

.
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By construction,

g(z) :=
z2 − z4

3!
+ z6

5!
− . . .

z2 + z3

2!
+ z4

3!
+ . . .

=
1− z2

3!
+ z4

5!
− . . .

1 + z
2!
+ z2

3!
+ . . .

.

So the first non-zero coefficient of the Laurent series of g must be g(0) = 1. It follows that
f(z) = g(z)/z has a Laurent series at z0 = 0 with first non-zero coefficient c−1 = g(0) = 1.
In particular, it is a pole of order 1.

To determine the region of convergence, we have to exclude all other singularities of f .
The only zero of 1/z is z0 = 0. The additional singularities of ez − 1 are characterized by

ez − 1 = 0 ⇐⇒ ez = 1 ⇐⇒ z = log(1) ⇐⇒ z = 2πik, k ∈ Z

The closest singularities to 0 are ±2πi which means that the Laurent series converge for
all z satisfying 0 < |z| < 2π, i.e. the radius of the convergence is 2π.

■

Exercice 3. Consider f(z) =
sin(z2+1)
(z2+1)2

.

(a) Find all singularities of f and determine their nature.

(b) Compute the residue in each singularity.

(c) Determine the region of convergence of the Laurent series around each singularity.

Answer.

(a) See below.

(b) The singularities are z0 = i and z0 = −i. Everywhere else, the function is defined and
complex differentiable. We develop the first few terms of Laurent series at each singularity.

First, consider z0 = i. We integrate along a closed simple regular curve γ around z0:

cn =
1

2πi

∫
γ

sin(z2 + 1)

(z + i)2(z − i)2(z − i)n+1
.

When n ≤ −3, then the integrand is holomorphic at a (small) neighborhood of z0 = i,
and so the Cauchy integral theorem implies that cn = 0. Hence this a pole of order at
most 2. A similar argument shows that z0 = −i is a pole of order at most 2 as well.

Next, if n = −2, we integrate around z0 = i:

c−2 =
1

2πi

∫
γ

sin(z2 + 1)

(z + i)2(z − i)2(z − i)−1

=
1

2πi

∫
γ

sin(z2 + 1)/(z + i)2

(z − i)

=
1

2πi
sin(i2 + 1)/(i+ i)2 = 0.
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If n = −1, we also find that

c−1 =
1

2πi

∫
γ

sin(z2 + 1)/(z + i)2

(z − i)2

=

(
sin(z2 + 1)

(z + i)2

)′

(i)

=
−2 sin(z2 + 1) + 2z(z + i) cos(z2 + 1)

(z + i)3
(i) =

2i(2i) cos(0)

(2i)3
=

1

2i
.

Consequently, this a pole of order 1, and the residual is

c−1 =
1

2i
.

Similarly, consider the case z0 = −i. If n = −2, we once more find

c−2 =
1

2πi

∫
γ

sin(z2 + 1)

(z + i)2(z − i)2(z + i)−1

=
1

2πi

∫
γ

sin(z2 + 1)/(z − i)2

(z + i)

=
1

2πi
sin((−i)2 + 1)/(−i− i)2 = 0.

If n = −1, we also find that

c−1 =
1

2πi

∫
γ

sin(z2 + 1)/(z + i)2

(z − i)2

=

(
sin(z2 + 1)

(z − i)2

)′

(−i)

=
−2 sin(z2 + 1) + 2z(z − i) cos(z2 + 1)

(z − i)3
(−i) =

2(−i)(−2i) cos(0)2

(−2i)3
=

−1

2i
.

Consequently, this a pole of order 1, and the residual is

c−1 =
−1

2i
.

(c) The distance between the singularites −i and i is 2. We see that 0 < |z − i| < 2 and
0 < |z+i| < 2 are the regions of convergence of the Laurent series at i and −i, respectively.

■

Exercice 4. Find the coefficients of the Laurent series of the following functions around the
specified point. Determine the nature of the singularity.

(a) g(z) =
ez

(z − 2)2
and z0 = 2

(b) g(z) =
2z3 + 5z2 + z + ı

z + ı
and z0 = −ı

(c) g(z) =
cos ((z − 1)2)

(z − 1)3
at z0 = 1

(d) g(z) =
1

z(z − 1)2
and z0 = 1
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Answer.

(a) Since the complex exponential function is holomorphic on C, we know that the Taylor
series of g(z) = ez at z0 = 2 coincides with the Laurent series at z0 = 2. Moreover, this
series is given by (see Exercise 1.)

g(z) =
∞∑
n=0

e2

n!
(z − 2)n.

Consequently, the Laurent series of the function g at the point z0 = 2 is given by

g(z) =
1

(z − 2)2

∞∑
n=0

e2

n!
(z − 2)n =

∞∑
n=0

e2

n!
(z − 2)n−2 =

∞∑
n=−2

e2

(n+ 2)!
(z − 2)n.

The coefficients of the Laurent series are given by

an =
e2

(n+ 2)!
∀n ≥ −2 and an = 0 otherwise.

Consequently, f has a second order pole at z0 = 2.

(b) Following the same strategy as before, we first introduce the holomorphic function g(z) =
2z3 +5z2 + z+ ı. The Taylor series of this function at z0 = −ı can easily be computed as

g(z) = −(5− 2ı)− (5 + 10ı)(z + ı) + (5− 6ı)(z + ı)2 + 2(z + ı)3.

Consequently, the Laurent series of the function g at the point z0 = −ı is given by

g(z) =
−(5− 2ı)− (5 + 10ı)(z + ı) + (5− 6ı)(z + ı)2 + 2(z + ı)3

z + ı

= −(5− 2ı)

z + ı
− (5 + 10ı) + (5− 6ı)(z + ı) + 2(z + ı)2.

The coefficients of the Laurent series are given by

a−1 = −(5− 2ı); a0 = −(5 + 10ı); a1 = (5− 6ı); a2 = 2; an = 0 otherwise.

Consequently, g has a first order pole at z0 = −ı.

(c) As before, we introduce the holomorphic function g(z) = cos
(
(z − 1)2

)
. In order to

compute the Taylor series of this function at z0 = 1, we first compute the Taylor series
of the auxiliary function h(y) = cos(y) at y0 = 0, which is given by

h(y) =
∞∑
n=0

(−1)n

(2n)!
y2n.

Using now the substitution y = (z− 1)2, we deduce that the Taylor series of the function
cos

(
(z − 1)2

)
at z0 = 1 is given by

∞∑
n=0

(−1)n

(2n)!
(z − 1)4n.
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Consequently, the Laurent series of the function g at the point z0 = 1 is given by

g(z) =
1

(z − 1)3

∞∑
n=0

(−1)n

(2n)!
(z − 1)4n

=
∞∑
n=0

(−1)n

(2n)!
(z − 1)4n−3.

We thus deduce that the Laurent coefficients are given by

a4n−3 =
(−1)n

(2n)!
∀n ∈ N, an = 0 otherwise.

In particular, g has a third order pole at z0 = 1.

(d) We introduce the function g : C \ {0} → C given by g(z) = 1/z. Of course g is not
holomorphic on the entire complex plane but g is indeed holomorphic in the open ball of
radius 1 centered at z0 = 1. Let us denote this open ball by B1(z0).

It follows that in the ball B1(z0), the Taylor series of g at z0 = 1 coincides with the
Laurent series. To obtain this Taylor series, we note that

1

z
=

1

(z − 1) + 1
=

∞∑
n=0

(−1)n(z − 1)n,

and consequently

g(z) =
∞∑
n=0

(−1)n(z − 1)n ∀z ∈ B1(z0).

Therefore, the Laurent series of the function g at the point z0 = 1 is given by

g(z) =
1

(z − 1)2

∞∑
n=0

(−1)n(z − 1)n =
∞∑
n=0

(−1)n(z − 1)n−2

=
∞∑

n=−2

(−1)n(z − 1)n ∀z ∈ B1(z0) \ {z0}.

Studying the terms appearing in this Laurent series, we can deduce that the Laurent
coefficients are given by

an = (−1)n ∀n ∈ {−2,−1} ∪ N, an = 0 otherwise.

In particular, g has a second order pole at z0 = 1.

■

Exercice 5. Find the coefficients of the Laurent series of the following functions around the
specified point. Determine the nature of the singularity.

(a) h(z) = sin
(
1
z

)
and z0 = 0

(b) h(z) = sin ((z − 1)−1) and z0 = 1

(c) h(z) = (z − 2)2 cos ((z − 2)−4) and z0 = 2

(d) h(z) = (z + ı)5e((z+ı)−2) and z0 = −ı
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Answer.

(a) Notice that the function f(y) = sin(y) is holomorphic on the entire complex plane. The
Taylor series of f at y0 = 0 is given by

sin(y) =
∞∑
n=0

(−1)n

(2n+ 1)!
y2n+1 ∀y ∈ C.

Using now the substitution y = 1/z for z ̸= 0, we deduce that the Laurent series for
h(z) = sin(1/z) at z0 = 0 is given by

sin(1/z) =
∞∑
n=0

(−1)n

(2n+ 1)!
z−2n−1 =

0∑
n=−∞

(−1)n

(−2n+ 1)!
z2n−1 ∀z ∈ C \ {0}.

Consequently, the Laurent series coefficients are given by

a−2n−1 =
(−1)n

(2n+ 1)!
∀n ∈ N, an = 0 otherwise,

and h has an essential singularity at z0 = 0.

(b) Recall once again that the function f(y) = sin(y) is holomorphic on the entire complex
plane. The Taylor series of f at y0 = 0 is given by

sin(y) =
∞∑
n=0

(−1)n

(2n+ 1)!
y2n+1 ∀y ∈ C.

This time, we use the substitution y = (z − 1)−1 for z ̸= 1 to deduce that the Laurent
series for h(z) = sin

(
(z − 1)−1

)
at z0 = 1 is given by

sin
(
(z − 1)−1

)
=

∞∑
n=0

(−1)n

(2n+ 1)!
(z − 1)−2n−1 =

0∑
n=−∞

(−1)n

(−2n+ 1)!
z2n−1 ∀z ∈ C \ {1}.

Consequently, the Laurent series coefficients are given by

a−n =
(−1)n

(2n+ 1)!
∀n ∈ N, an = 0 otherwise,

and h has an essential singularity at z0 = 1.

(c) As before, we observe that the function f(y) = cos(y) is holomorphic on the entire complex
plane. The Taylor series of f at y0 = 0 is given by

cos(y) =
∞∑
n=0

(−1)n

(2n)!
y2n ∀y ∈ C.

Using now the substitution y = (z− 2)−4 for z ̸= 2, we deduce that the Laurent series for
cos

(
(z − 2)−4

)
at z0 = 2 is given by

cos
(
(z − 2)−4

)
=

∞∑
n=0

(−1)n

(2n)!
(z − 2)−8n =

0∑
n=−∞

(−1)n

(−2n)!
(z − 2)8n ∀z ∈ C \ {2}.
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As a consequence, the Laurent series for the function h(z) = (z − 2)2 cos
(
(z − 2)−4

)
at

z0 = 2 is given by

0∑
n=−∞

(−1)n

(−2n)!
(z − 2)8n+2 ∀z ∈ C \ {2}.

Therefore, the Laurent series coefficients are given by

a−8n+2 =
(−1)n

(2n)!
∀n ∈ N, an = 0 otherwise,

and h has an essential singularity at z0 = 2.

(d) Clearly, the function f(y) = exp(y) is holomorphic on the entire complex plane, and the
Taylor series of f at y0 = 0 is given by

exp(y) =
∞∑
n=0

1

n!
yn ∀y ∈ C.

Using now the substitution y = (z + ı)−2 for z ̸= −ı, we deduce that the Laurent series
for exp

(
(z + ı)−2

)
at z0 = −ı is given by

exp
(
(z + ı)−2

)
=

∞∑
n=0

1

n!
(z + ı)−2n =

0∑
n=−∞

1

(−n)!
(z + ı)2n ∀z ∈ C \ {−ı}.

As a consequence, the Laurent series for the function h(z) = (z + ı)5 exp
(
(z + ı)−2

)
at

z0 = −ı is given by

0∑
n=−∞

1

(−n)!
(z + ı)2n+5 ∀z ∈ C \ {−ı}.

Therefore, the Laurent series coefficients are given by

a−2n+5 =
(−1)n

n!
∀n ∈ N, an = 0 otherwise,

and h has an essential singularity at z0 = 2.

■

Exercice 6. (Extra) Prove Liouville’s theorem: if f : C → C is holomorphic and bounded,
that is, we have |f(z)| ≤ M for some M ≥ 0, then f is constant. The following steps might be
helpful.

(a) Write f as a power series with coefficients given by the Cauchy integral formula.

(b) Express the coefficients as line integrals over a circle of radius r > 0. Simplify the
expression.

(c) Estimate the magnitude of the coefficients.
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Answer. Suppose that f is holomorphic. We represent it by a Taylor series around z0 = 0:

f(z) =
∞∑
k=0

akz
k,

where ak ∈ C are the coefficients. Whenever γ : [0, 2π] → C is a closed curve that contains z0,
we can use Cauchy’s integral formula:

ak =
f (k)(0)

k!
=

1

2πi

∮
γ

f(ξ)

ξk+1
dξ.

We use a special choice of the curve, namely γ(t) = reit for some r > 0. Then we find

|ak| =
1

2π

∣∣∣∣∮
γ

f(ξ)

ξk+1
dξ

∣∣∣∣
=

1

2π

∣∣∣∣∮ 2π

0

f(reit)

rk+1e(k+1)it
· ireit dt

∣∣∣∣
=

1

2π

∣∣∣∣∮ 2π

0

f(reit)

rk+1e(k+1)it
· reit dt

∣∣∣∣ = 1

2π

∣∣∣∣∮ 2π

0

f(reit)

rkekit
dt

∣∣∣∣ .
Next, we use the following fact about integrals: given a (say, continuous) function g : [a, b] → C,
one has the inequality ∣∣∣∣∫ b

a

g(t)dt

∣∣∣∣ ≤ ∫ b

a

|g(t)| dt.

We can apply this and obtain:

1

2π

∣∣∣∣∮ 2π

0

f(reit)

rkekit
dt

∣∣∣∣ ≤ 1

2π

∮ 2π

0

∣∣∣∣f(reit)rkekit

∣∣∣∣ dt
≤ 1

2π

∮ 2π

0

|f(reit)|
|rkekit|

dt

≤ 1

2π

∮ 2π

0

M

|rkekit|
dt ≤ M

2π

∮ 2π

0

1

rk
dt ≤ M

rk
.

As r > 0 was completely arbitrary, we can make it arbitrarily large. But that means that |ak|
will be arbitrarily small, that is, equal zero.
This argument works for any k ≥ 1. We conclude that the coefficients a1, a2, a3, . . . must van-
ish. Hence, f(z) = a0. ■
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