
MATH-207(d) Analysis IV
Exercise session 4

1. Integrals on circles.
Let γ1 := {z ∈ C : |z| = 1} be the circle in the complex plane with center 0 and radius 1 and
γ2 := {z ∈ C : |z − 2| = 1} the circle with center 2 and radius 1. Compute the value of the
following integrals, some of which have been discussed in the lecture.

(a)
∫
γ1

1
z
dz.

(b)
∫
γ1

1
z2
dz.

(c)
∫
γ2

1
z
dz.

(d)
∫
γ2

1
z2
dz.

Answer. Using the Cauchy-integral formula for f(z) = 1 :

(a) ∫
γ1

1

z
dz = 2πif(0) = 2πi

(b) ∫
γ1

1

z2
dz =

2πi

1!
f ′(0) = 0

(c) Since 1/z is holomorphic on this circle and its interior we have∫
γ2

1

z
dz = 0

(d) Since 1/z2 is holomorphic on this circle and its interior we have∫
γ2

1

z2
dz = 0

■
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2. More integrals on circles
Compute the following integrals.

(a)
∫
γ

e2z

z
dz with γ = {z ∈ C : |z| = 2}.

(b)
∫
γ

z3+2z2+2
z−2i

dz with γ =
{
z ∈ C : |z − 2i| = 1

4

}
.

(c)
∫
γ

sin(2z2+3z+1)
z−π

dz with γ = {z ∈ C : |z − π| = 1}.

(d)
∫
γ

3z2+2z+sin(z+1)
(z−2)2

dz with γ = {z ∈ C : |z − 2| = 1}.

(e)
∫
γ

ez

z(z+2)
dz with γ = {z ∈ C : |z| = 1}.

Answer.

(a) The function f(ξ) = e2ξ is holomorphic on C. The curve γ is the circle centered at the
origin of radius 2. Thus by Cauchy integral formula∫

γ

f(ξ)

ξ
dξ = 2πif(0) = 2πi.

Note that we could have tried to compute the integral directly, for example, parametrizing
the circle as

γ(t) = 2eit, 0 ≤ t ≤ 2π.

In this case we would find

∫
γ

e2z

z
dz =

∫ 2π

0

e4e
it

eit
ieitdt = i

∫ 2π

0

e4 cos te4i sin tdt,

which is not trivial to compute.

(b) The function f(ξ) = ξ3+2ξ2+2, z = 2i is holomorphic on C and the curve γ is the circle
of center 2i and radius 1

4
. Thus by Cauchy integral formula∫

γ

z3 + 2z2 + 2

z − 2i
dz = 2πif(2i) = 16π − 12πi.

Although it cannot be done in one line, the computation without the Cauchy integral
formula is tractable. Take for instance

γ(t) = 2i+
1

4
eit, 0 ≤ t ≤ 2π.

Then we would have to compute the following by parts.

∫
γ

z3 + 2z2 + 2

z − 2i
dz =

∫ 2π

0

(2i+ eit/4)
3
+ 2 (2i+ eit/4)

2
+ 2

eit/4

i

4
eitdt.

(c) The function f(ξ) = sin (2ξ2 + 3ξ + 1) is holomorphic on C and the curve γ is the circle
centered in z = π of radius 1. Then the Cauchy integral formula yields∫

γ

sin (2z2 + 3z + 1)

z − π
dz = 2πif(π) = 2πi sin

(
2π2 + 3π + 1

)
.
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(d) The function f(ξ) = 3ξ2+2ξ+sin(ξ+1) is holomorphic on C and the curve γ is the circle
centered in z = 2 of radius 1. Thus to apply the Cauchy integral differentiation formula
with n = 1 we compute f ′(ξ) = 6ξ + 2 + cos(ξ + 1) and find∫

γ

3z2 + 2z + sin(z + 1)

(z − 2)2
dz = 2πif ′(2) = 2πi(14 + cos 3).

(e) The function f(ξ) = eξ/(ξ + 2) is holomorphic on C \ {−2} and the curve γ is the unit
circle centered at the origin, therefore f is holomorphic on int(γ). By Cauchy integral
formula we find ∫

γ

ez

z(z + 2)
dz = 2πif(0) = 2πi

1

2
= πi.

■

3. Another integral on a closed curve.
Let γ be any simple, closed and piecewise regular curve. Discuss the value of∫

γ

5z2 − 3z + 2

(z − 1)3
dz

depending on the curve γ. You must distinguish the cases:

• The pole of the integrand lies within the region encircled by the curve

• The pole of the integrand lies outside of the region encircled by the curve

• The pole lies on the curve

Answer. First note that the integrand is holomorphic on C \ {1}.

(a) Case 1 ∈ int(γ), that is, 1 lies in the region encircled by the curve γ. We apply the
Cauchy integral formula to f(ξ) = 5ξ2 − 3ξ + 2 in z = 1 and with n = 2. We have that
f ′′(1) = 10 and thus ∫

γ

5z2 − 3z + 2

(z − 1)3
dz = 10πi.

(b) Case 1 /∈ int(γ), that is, 1 lies outside that region, and is not on γ either1. The Cauchy
theorem immediately allows to conclude∫

γ

5z2 − 3z + 2

(z − 1)3
dz = 0.

(c) Case 1 ∈ γ. The integral is ill-defined as the curve passes through the pole z = 1.

■

1If you have discussed open sets in Analysis I & II, then may have seen the “closure” of a set A.
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4. Yet another integral.
Compute the integral ∫

γ

ez
2

(z − 1)2 (z2 + 4)
dz

in the following cases :

(a) γ is the circle centered in z = 1 of radius 1.

(b) γ is the boundary of the rectangle
{
z ∈ C : −1

2
≤ Re(z) ≤ 1

2
, 0 ≤ Im(z) ≤ 4

}
.

(c) γ is the boundary of the rectangle {z ∈ C : −2 ≤ Re(z) ≤ 0, −1 ≤ Im(z) ≤ 1}.

Answer.

(a) The function f(ξ) = eξ
2
/ (ξ2 + 4) is holomorphic on C \ {2i,−2i}. The circle around 1

with radius 1 is within that set and does not include any of the two singularities. By
Cauchy integral formula in z = 1 for n = 1 we get

∫
γ

ez
2

(z − 1)2 (z2 + 4)
dz = 2πif ′(1).

Differentiating f gives

f ′(ξ) =
2ξeξ

2
(ξ2 + 4)− 2ξeξ

2

(ξ2 + 4)2

and yields f ′(1) = 8e/25. Thus we conclude

∫
γ

ez
2

(z − 1)2 (z2 + 4)
dz =

16eπ

25
i

(b) Note that

ez
2

(z − 1)2 (z2 + 4)
=

ez
2

(z − 1)2 (z + 2i) (z − 2i)

The function

f(ξ) =
eξ

2

(ξ − 1)2(ξ + 2i)

is holomorphic on C \ {1,−2i}, and the rectangle does not include any of the two singu-
larities. By Cauchy integral formula in z = 2i we get

∫
γ

ez
2

(z − 1)2 (z2 + 4)
dz =

∫
γ

f(z)

(z − 2i)
dz = 2πif(2i) =

−πe−4

2(3 + 4i)
.

(c) In this last situation, the integrand is holomorphic on C \ {1, 2i,−2i}. The curve lies
within this set and does not contain any of the three singularities. Therefore, by the
Cauchy theorem we immediately get

∫
γ

ez
2

(z − 1)2 (z2 + 4)
dz = 0.

■
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5. Difficult integrals made “easy”.
Complex analysis can be a powerful tool to calculate complicated integrals, even if those in-
teg7rals do not involve complex numbers at all! The goal of this exercise is to show that∫ +∞

−∞
e−x2

cos(2bx)dx =
√
πe−b2 (1)∫ +∞

−∞
e−x2

sin(2bx)dx = 0. (2)

(a) Argue that f(z) = e−z2 is holomorphic on C.

(b) Consider the path γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 shown in Figure 1

Figure 1: Path in complex plane for Exercise 4(b).

(i) Argue that
∫
γ
f(z)dz = 0.

(ii) Show that lim
a→+∞

∫
γ2
f(z)dz = lim

a→+∞

∫
γ4
f(z)dz = 0.

(iii) Using that
∫ +∞
−∞ e−x2

dx =
√
π, conclude by showing (1) and (2).

Answer.

(a) The function f is the composition of holomorphic functions on C therefore f is also
holomorphic on C.

(b) (i) We have that γ is a simple, closed and piecewise regular path and f is holomorphic
on int(γ). By Cauchy theorem we find∫

γ

f(z)dz = 0.

(ii) Let us parametrize the segments as

γ1(t) = t, with t ∈ [−a, a] ,

γ2(t) = a+ it, with t ∈ [0, b] ,

γ3(t) = −t+ ib, with t ∈ [−a, a] ,

γ4(t) = −a+ i(b− t), with t ∈ [0, b] ,

Then with the contour integral formula we find∫
γ2

f(z)dz = i

∫ b

0

e−(a+it)2dt = ie−a2
∫ b

0

e−2ait+t2dt
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and thus lima→+∞
∫
γ2
f(z)dz = 0 because e−a2 converges to zero whereas the integral

is bounded for any a.

Similarily∫
γ4

f(z)dz = −i

∫ b

0

e−(−a+i(b−t))2dt = −ie−a2
∫ b

0

e2ai(b−t)+(b−t)2dt

and thus as previously lima→+∞
∫
γ4
f(z)dz = 0.

(iii) Using the parametrization introduced in the previous question, we find∫
γ1

f(z)dz =

∫ a

−a

e−t2dt

and therefore

lim
a→+∞

∫
γ1

f(z)dz =

∫ ∞

−∞
e−t2dt =

√
π.

On the other hand∫
γ3

f(z)dz = −
∫ a

−a

e−(−t+bi)2dt = −
∫ a

−a

e−t2+2bti+b2dt

= −eb
2

∫ a

−a

e−t2(cos(2bt) + i sin(2bt))dt,

which implies that

lim
a→+∞

∫
γ3

f(z)dz = −eb
2

∫ ∞

−∞
e−t2 cos(2bt)dt− ieb

2

∫ ∞

−∞
e−t2 sin(2bt)dt.

Finally note that for every a we have
∫
γ
f(z)dz = 0 and so letting a → +∞ we find

0 =

∫
γ

f(z)dz

= lim
a→+∞

∫
γ

f(z)dz

= lim
a→+∞

∫
γ1

f(z)dz︸ ︷︷ ︸
=
√
π

+ lim
a→+∞

∫
γ2

f(z)dz︸ ︷︷ ︸
=0

+ lim
a→+∞

∫
γ3

f(z)dz + lim
a→+∞

∫
γ4

f(z)dz︸ ︷︷ ︸
=0

=
√
π − eb

2

∫ ∞

−∞
e−t2 cos(2bt)dt− ieb

2

∫ ∞

−∞
e−t2 sin(2bt)dt.

By identification of the real and imaginary parts, from this we can conclude∫ ∞

−∞
e−x2

cos(2bx)dx =
√
πe−b2 ,

∫ ∞

−∞
e−x2

sin(2bx)dx = 0.

■
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6. Complex numbers and fluid dynamics.
Complex analysis has been a tool in fluid dynamics for a long time. Let D ⊆ R2 be an open
set. A vector field F⃗ : D → R2 represents the velocity field of a fluid flow. The flow is called
irrotational if curl F⃗ = 0 and incompressible if div F⃗ = 0 over O.

(a) Show that the vector field

F⃗ : R2 \ {0} → R2, (x1, x2) 7→
(

x1

x2
1 + x2

2

,
x2

x2
1 + x2

2

)
(3)

is irrotational and incompressible.

(b) Represent F⃗ by a complex function f : O → C for some open set O ⊆ C. Show that f is
complex differentiable.

Answer.

(a) We first compute the partial derivatives of the components:

∂x1

x1

x2
1 + x2

2

=
1

x2
1 + x2

2

− 2x2
1

(x2
1 + x2

2)
2
,

∂x2

x2

x2
1 + x2

2

=
1

x2
1 + x2

2

− 2x2
2

(x2
1 + x2

2)
2
,

∂x2

x1

x2
1 + x2

2

= ∂x1

x2

x2
1 + x2

2

=
2x1x2

(x2
1 + x2

2)
2
.

Now, one easily sees that F⃗ must incompressible and irrotational.

(b) As seen on the previous exercise sheet, the function

f(z) := f(x+ yi) =

(
y

x2 + y2
,

x

x2 + y2

)
(4)

is complex differentiable over O := C \ {0}.

■

7. Contour integration.
Compute the following contour integrals.

(a)
∫
γ
(z2 + 1)dz where γ = [1, 1 + i] (segment between 1 and 1 + i).

(b)
∫
γ
Re(z2)dz, where γ = {z ∈ C : |z| = 1} (unit circle in 0).

Answer.

(a) We parametrize the segment as γ(t) = 1 + it for t ∈ [0, 1]. Then applying the contour
integral formula we find

∫
γ

(
z2 + 1

)
dz =

∫ 1

0

(
(it+ 1)2 + 1

)
idt = i

∫ 1

0

(
−t2 + 2it+ 2

)
dt =

5i

3
− 1.
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(b) We parametrize the segment as γ(t) = eit for t ∈ [0, 2π]. Then applying the contour
integral formula we find∫

γ

Re
(
z2
)
dz =

∫ 2π

0

Re
(
e2it

)
ieitdt = i

∫ 2π

0

cos(2t)(cos(t) + i sin(t))dt = 0.

The last step can be justified in many ways, one of which is a graphical argument that
can be formalized by observing∫ 2π

0

cos(2t)(cos(t) + i sin(t)) =

∫ π
2

−π
2

cos
(
2
(
t+

π

2

))
cos

(
t+

π

2

)
+

∫ π
2

−π
2

cos

(
2

(
t+

3π

2

))
cos

(
t+

3π

2

)
+ i

∫ π

−π

cos(2(t+ π)) sin(t+ π).

and that the three integrands are odd functions.

■

Extra. Understanding complex numbers, once more If z = x+iy is a complex number,
what is the geometric interpretation of iz? More generally, for any θ ∈ R, what is the geometric
interpretation of eθiz? Finally, intepret this in terms of matrices.

Answer. If we interpret the complex number z as a vector (x, y) ∈ R2, then we can also
interpret iz = ix − y as the vector (−y, x) ∈ R2. In other words, multiplication with i can be
interpreted as counterclockwise rotation by 90◦.

More generally, if z = |z|eϕi has argument ϕ, then eθi · |z|eϕi = |z|e(θ+ϕ)i has argument θ. In
other words, multiplication with eθi can be interpreted as counterclockwise rotation by θ radians.

As seen on the previous exercise sheet, we can interpret any complex number

eθi = cos(θ) + sin(θ)i

as a matrix

M(eθi) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

As (probably) discussed in linear algebra, this is a rotation matrix: the matrix-vector product
of M(eθi) and (x, y)t rotates the vector (x, y)t by the angle radian θ. ■
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