MATH-207(d) Analysis IV

Exercise session 4

1. Integrals on circles.
Let 71 := {z € C: |z| = 1} be the circle in the complex plane with center 0 and radius 1 and

v = {z € C:|z—2| =1} the circle with center 2 and radius 1. Compute the value of the
following integrals, some of which have been discussed in the lecture.
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(c) Since 1/z is holomorphic on this circle and its interior we have
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(d) Since 1/2z? is holomorphic on this circle and its interior we have
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2. More integrals on circles
Compute the following integrals.

(a)
(b)
()
()
(e)

J, £ dz with y = {z € C: |2] = 2}.
[, #2520z with 7 = {2 € €1z~ 21 = 1),

fvwdzwﬁhVZ{zeC:|Z_7T|:1}‘

32242z+sin(z+1 .
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f7 —“ ~dz withy={2€C:|z| =1}.
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Answer.

(a)

The function f(£) = €2 is holomorphic on C. The curve « is the circle centered at the
origin of radius 2. Thus by Cauchy integral formula

/@df = 2mif(0) = 2mi.

Note that we could have tried to compute the integral directly, for example, parametrizing
the circle as
y(t) =2e", 0<t <2

In this case we would find
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which is not trivial to compute.

The function f(£) = € + 262+ 2, 2 = 2i is holomorphic on C and the curve 7 is the circle
of center 2¢ and radius }1. Thus by Cauchy integral formula

3492249
/Mdz = 2mif(2i) = 16m — 127i.
. z— 20

Although it cannot be done in one line, the computation without the Cauchy integral
formula is tractable. Take for instance

1 .
v(t) = 2i + Ze”, 0<t<2r

Then we would have to compute the following by parts.

dz — : —eltdt.
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The function f(£) = sin (262 + 3¢ + 1) is holomorphic on C and the curve v is the circle
centered in z = 7 of radius 1. Then the Cauchy integral formula yields

/ sin (222 + 32 + 1)
vy

dz = 2mif(r) = 2misin (27° + 37+ 1) .
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(d) The function f(£) = 362+ 2£ +sin(€+1) is holomorphic on C and the curve 7 is the circle
centered in z = 2 of radius 1. Thus to apply the Cauchy integral differentiation formula
with n = 1 we compute f'(§) = 6§ + 2+ cos({ + 1) and find

dz = 2mif'(2) = 2mi(14 + cos 3).

/ 32% 4+ 2z +sin(z + 1)
vy (Z - 2)2

(e) The function f(£) = €%/(¢ + 2) is holomorphic on C \ {—2} and the curve 7 is the unit
circle centered at the origin, therefore f is holomorphic on int(y). By Cauchy integral
formula we find

e* 1
—C dr = 2mif(0) = 2mis = mi.
/Wz(z+2) z = 2mif(0) iy =i

3. Another integral on a closed curve.
Let v be any simple, closed and piecewise regular curve. Discuss the value of

/522—32+2dz
5 ("7‘_1)3

depending on the curve . You must distinguish the cases:
e The pole of the integrand lies within the region encircled by the curve
e The pole of the integrand lies outside of the region encircled by the curve

e The pole lies on the curve

Answer. First note that the integrand is holomorphic on C\ {1}.

(a) Case 1 € int(7), that is, 1 lies in the region encircled by the curve v. We apply the
Cauchy integral formula to f(§) = 52 — 3¢ +2 in z = 1 and with n = 2. We have that
f"(1) =10 and thus

522 — 3242
/—’Z ‘20— 10m.
¥ (2_1)3

(b) Case 1 ¢ int(y), that is, 1 lies outside that region, and is not on 7 either!. The Cauchy
theorem immediately allows to conclude

522 -3 2
/idzzo_
¥ (2_1)3

(c) Case 1 € 4. The integral is ill-defined as the curve passes through the pole z = 1.

'If you have discussed open sets in Analysis I & II, then may have seen the “closure” of a set A.
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4. Yet another integral.

Compute the integral
22
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in the following cases :
(a) v is the circle centered in z = 1 of radius 1.
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(b) v is the boundary of the rectangle {z € C: —1 < Re(z
(c) 7 is the boundary of the rectangle {z € C: —2 < Re(z)

Answer.
(a) The function f(&) = €&/ (€2 +4) is holomorphic on C\ {2i, —2i}. The circle around 1
with radius 1 is within that set and does not include any of the two singularities. By

Cauchy integral formula in z =1 for n = 1 we get

22

L(z—n2@z+@d2:2Mfuy

Differentiating f gives
26e (2 +4) — 26e

PO =G
and yields f/(1) = 8e/25. Thus we conclude
/ e* Qs — 1667TZ,
L (z=1)2(z2+4) 25
(b) Note that
e B e
(2= 1)2 (24 20) (2 — 20)

(z—1)2(22+4)
_ 662
T = e+

is holomorphic on C\ {1, —2i}, and the rectangle does not include any of the two singu-

The function

larities. By Cauchy integral formula in z = 2 we get
2
e* f(2) e —me4

dz:/ ~dz = 2mif(2i) = ——.

/7 (2 —1)2(22+4) . (2 —2i) 2(3 4 4i)

(c) In this last situation, the integrand is holomorphic on C \ {1,2i, —2i}. The curve lies
within this set and does not contain any of the three singularities. Therefore, by the

Cauchy theorem we immediately get
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5. Difficult integrals made “easy”.
Complex analysis can be a powerful tool to calculate complicated integrals, even if those in-
tegTrals do not involve complex numbers at alll The goal of this exercise is to show that

400
/ e cos(2bz)dzx = /me (1)

o0

“+oo
/ e~ sin(2bz)dz = 0. (2)

(a) Argue that f(z) = e * is holomorphic on C.
(b) Consider the path v =~ U~s U3 U4 shown in Figure 1
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Figure 1: Path in complex plane for Exercise 4(b).

(i) Argue that [ f(z)dz = 0.
(i) Show that 113_1 [, f(z)dz = lim [ f(z)dz=0.

a——+00

(iii) Using that fj;o e~ dz = /7, conclude by showing (1) and (2).

Answer.

(a) The function f is the composition of holomorphic functions on C therefore f is also
holomorphic on C.

(b) (i) We have that ~y is a simple, closed and piecewise regular path and f is holomorphic
on int(y). By Cauchy theorem we find

/Wf(z)dz = 0.

(ii) Let us parametrize the segments as

1(t) =t, with ¢t € [—a,a],
12(t) = a + it, with ¢ € [0, ],
v3(t) = —t + b, with ¢t € [—a,al,
Y(t) = —a+i(b—1t), with ¢ € [0, 9],

Then with the contour integral formula we find

b b
/ f(z)dz = z/ e D’ g — e~ / e 2 gy
Y2 0 0
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and thus lim, . o fw f(2)dz = 0 because e~* converges to zero whereas the integral

is bounded for any a.

Similarily

b b
/ f(2)dz = —i / e~ ot qt = —jem” / 2=+t g
Y4 0 0

and thus as previously lim,_, o fm f(z)dz = 0.

(iii) Using the parametrization introduced in the previous question, we find

/ f(z)dz = /a et
" ~a

Jm [
On the other hand

/ f(z)dz = — /a e~ (CtH0? gy — /a o tH20ti+b? gy
3 —a —a

= / e (cos(2bt) + i sin(2bt))dt,

and therefore

/ e dt = /7.

which implies that

lim / f(z)dz = —eb2/ e~ cos(2bt)dt — iebz/ e~ sin(2bt)dt.

a—r+00 Y3 —00 —00

Finally note that for every a we have f f(2)dz = 0 and so letting a — 400 we find

O:/f(z)dz
= agrfoo/7 f(z)dz

= lim f(z)dz—l— lim f(z)dz+ lim f(z)dz+ lim f(z)dz
a—+00 a%+ 72 a——+00 3 a——+00 Y4
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=T — / et cos(2bt)dt — ie® / et sin(2bt)dt.

oo

By identification of the real and imaginary parts, from this we can conclude

oo

/ e cos(2bx)dx = v/me ", / e sin(2bx)dz = 0.
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6. Complex numbers and fluid dynamics.

Complex analysis has been a tool in fluid dynamics for a long time. Let D C R? be an open
set. A vector field F' : D — R2 represents the velocity field of a fluid flow. The flow is called
irrotational if curl F = 0 and incompressible if div F =0 over O.

(a) Show that the vector field

= T T2
F:R*\ {0} - R? — 3
\{ } ) (331,1'2) (x%—i—x%’x%—i—x%) ( )
is irrotational and incompressible.

(b) Represent F by a complex function f : O — C for some open set O C C. Show that f is
complex differentiable.

Answer.

(a) We first compute the partial derivatives of the components:

2
a I’l . 1 . 21‘1
179 2 = T2 2 2 N2’
i +a3 a5 +axs (x4 x3)
2
T 1 275
T2 2 2~ 2 2 7.2 2)2°
Ty + 3 T] + 75 (xl + 3)
I ) 21‘11’2

=90 -
€T T .
‘x4 a3 ‘o4 a3 (af 4 23)?

Now, one easily sees that F must incompressible and irrotational.

(b) As seen on the previous exercise sheet, the function

1) = i) = (s @)

x2+y27x2_|_y2

is complex differentiable over O := C\ {0}.

7. Contour integration.
Compute the following contour integrals.

(a) [,(2*+1)dz where v = [1,1 + 1] (segment between 1 and 1 + ).
(b) [, Re(z®)dz, where y = {z € C: |z| = 1} (unit circle in 0).

Answer.

(a) We parametrize the segment as y(t) = 1 + it for ¢t € [0,1]. Then applying the contour
integral formula we find

1 1 .
/(22+1)dz:/ ((it+1)2—|—1)idt:i/ (—t2+2it+2)dt:%—1.
¥ 0 0
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(b) We parametrize the segment as v(t) = € for ¢ € [0,2n]. Then applying the contour
integral formula we find

A Re (2°) dz = /0 " Re (e*) ie"dt = i /0 " cos(2t)(cos(t) + isin(t))dt = 0.

The last step can be justified in many ways, one of which is a graphical argument that
can be formalized by observing

/O27r cos(2t)(cos(t) +isin(t)) = /i cos (2 <t + g)) cos (t + g)

(2005 Yo (1)
i / cos(2(t + 7)) sin(t + ).

—T

and that the three integrands are odd functions.

Extra. Understanding complex numbers, once more If z = z+iy is a complex number,
what is the geometric interpretation of iz? More generally, for any # € R, what is the geometric
interpretation of €?2? Finally, intepret this in terms of matrices.

Answer. If we interpret the complex number z as a vector (z,y) € R?, then we can also
interpret iz = iz — y as the vector (—y,z) € R% In other words, multiplication with i can be
interpreted as counterclockwise rotation by 90°.

More generally, if z = |z|e?" has argument ¢, then % . |z]e?" = |z|e®+?) has argument 6. In
other words, multiplication with e’ can be interpreted as counterclockwise rotation by 6 radians.

As seen on the previous exercise sheet, we can interpret any complex number
e’ = cos(f) + sin(0)i

as a matrix M) = (2?5((2)) —Czlsr(lg)) .

As (probably) discussed in linear algebra, this is a rotation matrix: the matrix-vector product
of M(e?) and (z,y)! rotates the vector (z,y)" by the angle radian 6. [ |



