
MATH-207(d) Analysis IV
Exercise session 2

1. Cartesian to polar representation. Find the absolute value of the following complex
numbers in polar form, identifying both absolute value and principal argument:

z1 = 3 + 4i, z2 = −1 + i
√
3, z3 = −2− 2i, z4 = 5i,

z5 = −3, z6 = 1 + i, z7 = −1

2
+ i

√
3

2
, z8 = −2i.

Hint: in computing the principal argument, first think of how you can obtain the angle from
(x, y).

Answer. To express each complex number in polar form, we compute its absolute value and
principal argument. The absolute value of a complex number z = x+ yi is given by:

|z| =
√

x2 + y2.

The principal argument θ is generally found using:

θ = arctan
(y
x

)
,

with quadrant considerations to determine the correct angle. This leads to:

|z1| =
√
32 + 42 =

√
9 + 16 =

√
25 = 5, θ1 = arctan

(
4

3

)
≈ 0.93 rad,

⇒ z1 = 5eiθ1 .

|z2| =
√

(−1)2 + (
√
3)2 =

√
1 + 3 =

√
4 = 2, θ2 = arctan(−

√
3) =

2π

3
,

⇒ z2 = 2ei
2π
3 .

|z3| =
√
(−2)2 + (−2)2 =

√
4 + 4 =

√
8 = 2

√
2, θ3 = arctan

(
−2

−2

)
=

5π

4
,

⇒ z3 = 2
√
2ei

5π
4 .

|z4| =
√
02 + 52 = 5, θ4 =

π

2
,

⇒ z4 = 5ei
π
2 .

|z5| =
√

(−3)2 + 02 = 3, θ5 = π,

⇒ z5 = 3eiπ.
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|z6| =
√
12 + 12 =

√
2, θ6 = arctan(1) =

π

4
,

⇒ z6 =
√
2ei

π
4 .

|z7| =

√√√√(−1

2

)2

+

(√
3

2

)2

=

√
1

4
+

3

4
=

√
1 = 1, θ7 =

2π

3
,

⇒ z7 = ei
2π
3 .

|z8| =
√

02 + (−2)2 = 2, θ8 =
3π

2
,

⇒ z8 = 2ei
3π
2 .

■

2. Polar to Cartesian representation. Find the Cartesian representation of the following
complex numbers:

(a) r = 2, θ = π
4

(b) r = 3, θ = −π
3

(c) r = 4, θ = π

(d) r = 1, θ = 3π
2

Answer. We use the conversion formula, as seen in the lecture:

z = reiθ = r cos θ + ir sin θ.

Applying this formula to each case:

(a) r = 2, θ = π
4

z = 2ei
π
4 = 2 cos

π

4
+ i2 sin

π

4

= 2 ·
√
2

2
+ i2 ·

√
2

2

=
√
2 + i

√
2.

(b) r = 3, θ = −π
3

z = 3e−iπ
3 = 3 cos

(
−π

3

)
+ i3 sin

(
−π

3

)
= 3 · 1

2
+ i3 ·

(
−
√
3

2

)

=
3

2
− i

3
√
3

2
.
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(c) r = 4, θ = π

z = 4eiπ = 4 cos π + i4 sinπ

= 4 · (−1) + i4 · 0
= −4.

(d) r = 1, θ = 3π
2

z = 1ei
3π
2 = cos

3π

2
+ i sin

3π

2
= 0 + i(−1)

= −i.

■

3. Representation of functions. Write f : C → C in the form f = u + iv, where u and v
are its real and imaginary parts.

• f(z) = z3

• f(z) = 1
z+1

• f(z) = e2z

• f(z) = sin z

• f(z) = cos z

• f(z) = sinh z

• f(z) = cosh z

• f(z) = z
z+1

• f(z) = 1
z2+1

• f(z) = z2

z−i

Determine a formula for the absolute value in each case, simplifying as much as possible.

Answer. To express f : C → C in the form f = u + iv, where u and v are the real and
imaginary parts of f , we let z = x+ iy with x, y ∈ R and compute each function accordingly.

• f(z) = z3

Let z = x+ iy, then:

f(z) = (x+ iy)3 = x3 − 3xy2 + i(3x2y − y3).

Hence,
u(x, y) = x3 − 3xy2, v(x, y) = 3x2y − y3.

The absolute value is:

|f(z)| =
√
(x3 − 3xy2)2 + (3x2y − y3)2.
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• f(z) = 1
z+1

Writing z = x+ iy, we get:

f(z) =
1

(x+ 1) + iy
· (x+ 1)− iy

(x+ 1)− iy
=

x+ 1− iy

(x+ 1)2 + y2
.

Thus,

u(x, y) =
x+ 1

(x+ 1)2 + y2
, v(x, y) =

−y

(x+ 1)2 + y2
.

The absolute value is:

|f(z)| = 1√
(x+ 1)2 + y2

.

• f(z) = e2z

e2(x+iy) = e2xei2y = e2x(cos 2y + i sin 2y).

Hence,
u(x, y) = e2x cos 2y, v(x, y) = e2x sin 2y.

The absolute value is:
|f(z)| = e2x.

• f(z) = sin z
Using sin z = sinx cosh y + i cosx sinh y,

u(x, y) = sin x cosh y, v(x, y) = cos x sinh y.

The absolute value is:

|f(z)| =
√

sin2 x cosh2 y + cos2 x sinh2 y.

• f(z) = cos z
Using cos z = cosx cosh y − i sinx sinh y,

u(x, y) = cos x cosh y, v(x, y) = − sinx sinh y.

The absolute value is:

|f(z)| =
√
cos2 x cosh2 y + sin2 x sinh2 y.

• f(z) = sinh z
Using sinh z = sinhx cos y + i coshx sin y,

u(x, y) = sinh x cos y, v(x, y) = cosh x sin y.

The absolute value is:

|f(z)| =
√

sinh2 x cos2 y + cosh2 x sin2 y.

• f(z) = cosh z
Using cosh z = coshx cos y + i sinhx sin y,

u(x, y) = cosh x cos y, v(x, y) = sinh x sin y.

The absolute value is:

|f(z)| =
√

cosh2 x cos2 y + sinh2 x sin2 y.
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• f(z) = z
z+1

f(z) =
x+ iy

(x+ 1) + iy
· (x+ 1)− iy

(x+ 1)− iy
=

(x+ iy)(x+ 1− iy)

(x+ 1)2 + y2

=
x2 + ixy + x+ iy − ixy + y2

(x+ 1)2 + y2

=
x2 + x+ iy + y2

(x+ 1)2 + y2
.

Simplifying,

u(x, y) =
x(x+ 1) + y2

(x+ 1)2 + y2
, v(x, y) =

y

(x+ 1)2 + y2
.

The absolute value is:

|f(z)| =
√

x2 + y2√
(x+ 1)2 + y2

.

• f(z) = 1
z2+1

Expanding (x+ iy)2 + 1,

f(z) =
1

(x2 − y2 + 1) + i(2xy)
=

x2 − y2 + 1− i2xy

(x2 − y2 + 1)2 + 4x2y2
.

Thus,

u(x, y) =
x2 − y2 + 1

(x2 − y2 + 1)2 + 4x2y2
, v(x, y) =

−2xy

(x2 − y2 + 1)2 + 4x2y2
.

The absolute value is:

|f(z)| = 1√
(x2 − y2 + 1)2 + 4x2y2

.

• f(z) = z2

z−i

f(z) =
(x+ iy)2

x+ i(y − 1)
=

(x+ iy)2(x− i(y − 1))

x2 + (y − 1)2

=
(x2 − y2 + 2ixy)(x− iy + i)

x2 + (y − 1)2

=
x3 − xy2 + 2ix2y − x2yi+ y3i+ 2xy2 + x2i− y2i− 2xy

x2 + (y − 1)2

=
x3 + ix2y + y3i+ xy2 + x2i− y2i− 2xy

x2 + (y − 1)2

=
x3 + xy2 − 2xy + (x2y + y3 + x2 − y2)i

x2 + (y − 1)2
.

Expanding and simplifying,

u(x, y) =
x3 + xy2 − 2xy

x2 + (y − 1)2
, v(x, y) =

x2y + y3 + x2 − y2

x2 + (y − 1)2
.

The absolute value is:

|f(z)| = x2 + y2√
x2 + (y − 1)2

.

■
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4. Double exponentials.
Determine the real and imaginary part of the following functions:

f(z) = ee
z

, g(z) =
1

f(z)
,

where z = x+ iy. Describe the function f in the two special cases x = 0 and y = 0.

Answer. Using the definition of the complex exponential, we find

f(z) = ee
z

= ee
x cos(y)+ex sin(y)i

= ee
x cos(y)ee

x sin(y)i

= ee
x cos(y)

(
cos (ex sin(y)) + sin (ex sin(y)) i

)
= ee

x cos(y) cos (ex sin(y)) + ee
x cos(y) sin (ex sin(y)) i.

We obtain the formula for g similarly. We can also observe that |f(z)| = ee
x cos(y) and immedi-

ately conclude

g(z) = e−ex cos(y) cos (ex sin(y))− e−ex cos(y) sin (ex sin(y)) i.

In the special case y = 0, this formula just gives back the double exponential ee
x
in the one

single variable x. In the special case x = 0, we get

f(z) = f(iy) = ecos(y) cos (sin(y)) + ecos(y) sin (sin(y)) i.

■

5. Matrix representation of complex numbers.
Given a complex number z = x+ yi, we define a matrix

M(z) =

(
x −y
y x

)
.

Show the following:

M(z1 + z2) = M(z1) +M(z2), M(z1 · z2) = M(z1) ·M(z2),

M(z)−1 = M
(
z−1
)
if z ̸= 0.

Answer. We write z1 = x1 + y1i and z2 = x2 + y2i. We easily obverse

M(z1 + z2) =

(
x1 + x2 −y1 − y2
y1 + y2 x1 + x2

)
=

(
x1 −y1
−x1 y1

)
+

(
x2 −y2
−x2 y2

)
= M(z1) +M(z2).

We also check that

M(z1) ·M(z2) =

(
x1 −y1
y1 x1

)
·
(
x2 −y2
y2 x2

)
=

(
x1x2 − y1y2 −x1y2 − x2y1
x1y2 + x2y1 x1x2 − y1y2

)
= M(z1 · z2).

Finally, if z = x+ yi is not zero, then

M(z)−1 =

(
x −y
y x

)−1

=
1

x2 − y2

(
x y
−y x

)
M
(
z−1
)
= M

( z̄

z · z̄

)
= M

(
x− yi

x2 + y2

)
=

( x
x2−y2

y
x2−y2

−y
x2−y2

x
x2−y2

)
.

NB: Any such matrix M := M(z) satisfies M11 = M22 and M21 = −M12. ■
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6. Review Fourier series and Poisson problem.
Consider the boundary value problem of finding a function u : [0, 1] → R such that

u′′(x) = x, 0 < x < 1,

u(0) = u(1) = 0.

Express the solution as a Fourier series.

Answer. We explore two possible solutions: either we solve the boundary value problem
manually and compute its Fourier series, or we first compute the Fourier series and from there
the Fourier series of the solution.
1. First approach To compute the Fourier series of the right-hand side (RHS), also known as
source term, f(x) = x and derive the solution u(x), we proceed as follows. We expand f(x) = x
as a Fourier sine series on the interval [0, 1],

x =
∞∑
n=1

fn sin(nπx),

where the coefficients bn satisfy the formula

fn = 2

∫ 1

0

x sin(nπx) dx.

A simple integration by parts provides

2

∫ 1

0

x sin(nπx) dx = −2
x cos(nπx)

nπ

∣∣∣∣1
0

+ 2
1

nπ

∫ 1

0

cos(nπx) dx = 2 · (−1)n+1

nπ
=

2(−1)n+1

nπ
.

The function f(x) = x can thus be written

x =
∞∑
n=1

2(−1)n+1

nπ
sin(nπx), 0 < x < 1.

We assume that u(x) has the Fourier sine series of the form

u(x) =
∞∑
n=1

bn sin(nπx).

Differentiating this twice produces

u′′(x) = −
∞∑
n=1

bn(nπ)
2 sin(nπx).

Equating the coefficients of u′′(x) and f(x), we finally obtain the coefficients

−
∞∑
n=1

bn(nπ)
2 sin(nπx) =

∞∑
n=1

2(−1)n+1

nπ
sin(nπx).

=⇒ −bn(nπ)
2 =

2(−1)n+1

nπ

=⇒ bn =
2(−1)n

(nπ)3
.
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This result coincides with the one obtained by directly solving the boundary value problem and
expanding the solution into a Fourier series, to be discussed next.
2. Second approach To begin with, we integrate u′′(x) = x twice,

u′(x) =
1

2
x2 + C, u(x) =

1

6
x3 + Cx+D,

and apply the boundary conditions u(0) = 0 and u(1) = 0 to determine the coefficients:

u(0) = 0 =⇒ D = 0

u(1) = 0 =⇒ 1

6
+ C = 0 =⇒ C = −1

6
.

We conclude that the solution has the form

u(x) =
1

6
x3 − 1

6
x =

x3 − x

6
.

From here, we compute the Fourier series expansion, writing u(x) = x3−x
6

as

u(x) =
∞∑
n=1

bn sin(nπx)

with unknown coefficients bn. We must calculate

bn = 2

∫ 1

0

x3 − x

6
sin(nπx) dx =

1

3

∫ 1

0

(x3 − x) sin(nπx) dx.

Some simple computation, via integration by parts, shows

bn =
1

3

(∫ 1

0

x3 sin(nπx) dx−
∫ 1

0

x sin(nπx) dx

)
=

1

3
· 6(−1)n

(nπ)3
=

2(−1)n

(nπ)3
.

Thus we arrive at the Fourier series of the solution

u(x) =
∞∑
n=1

2(−1)n

(nπ)3
sin(nπx),

in agreement with our first approach to this problem. ■
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