MATH-207(d) Analysis IV
Fxercise session 2

1. Cartesian to polar representation. Find the absolute value of the following complex
numbers in polar form, identifying both absolute value and principal argument:
2 = 3+ 44, 2 = —1+ V3, 2y = —2 — 24, 24 = 5i,
1 V3

2'5:—3, Z6 — 1+Z, Z7:—§—|—27, ZgI—Zi.

Hint: in computing the principal argument, first think of how you can obtain the angle from
(z,y).

Answer. To express each complex number in polar form, we compute its absolute value and
principal argument. The absolute value of a complex number z = z + yi is given by:

2 = Va? 5 P,

The principal argument 6 is generally found using;:

0 = arctan (g) ,

X

with quadrant considerations to determine the correct angle. This leads to:

4
|| = V32 4+42 =9+ 16 =25 =5, 6 = arctan <§> ~ 0.93 rad,

= z; = 5e'?r.

|2o| = \/(—1)2 + (\/§)2 =v1+3= V4 = 2, 0y = arctan(—\/g) = —

2w
= 29 = 2e'3 .

—2
sl = V(22 4 (22 = vA+d=v8=2V2, 6;=arctan (_2> _5m
= 23 = Qﬂei%.

|24’:\/02+52:5, 9425,

i
= z4 = be'z,

|25] = V(=3)2+ 02 =3, 6=,

= 25 = R



26| = V12412 = \/5, 0 = arctan(1l) = %7

:ZGZ\/Eez%.
1\2 \/52 1 3 or
— (== Ye 2 =V1I=1 6.,===
&l (2>+<2> 171 V=1, 37
G2
= 2y =€ 3
3
25| = /02 + (—2)2 = 2, 98:7”,

2. Polar to Cartesian representation. Find the Cartesian representation of the following
complex numbers:

(a) r=2,0=7
(b) r=3,0=-%
(c)r=4,0=m
(d) 7":1,0:37”

Answer. We use the conversion formula, as seen in the lecture:

2 =re = rcosf + irsiné.

Applying this formula to each case:

(a) r=2,0=7

2 = 21 :2cos%+i281nz

1
2 2
:2'\2F“2'\2f

=V2+iV2.



z=4e" =4cosm +idsinT

=4-(=1)+#4-0
= —4.
(d)rzl,@z%"
11-37# 37T+_‘ 3
z=1e"2 =cos— +isin —
2 2
=0+i(—1)

= —1.

3. Representation of functions. Write f : C — C in the form f = u + v, where u and v
are its real and imaginary parts.

o flz2) =24

o f2) =1

o f(z) =¢*

o f(z) =sinz
o f(z) =cosz
o f(z) =sinhz
o f(z) = coshz
o f(2) =4

o f(2)=2n
.« ()=

Determine a formula for the absolute value in each case, simplifying as much as possible.

Answer. To express f : C — C in the form f = u + iv, where u and v are the real and
imaginary parts of f, we let z = x + 1y with x,y € R and compute each function accordingly.

. f(z) =2
Let z = x 4 1y, then:

f(2) = (@ +1iy)° = 2° = wy® +i(32°y — y°).

Hence,
u(z,y) = 2* — 3xy®,  v(z,y) =32’y — ¢’

The absolute value is:

[f(2)] = V/(@® = 3xy?)? + (322 — y*)2.

3



d f(Z) = Zil
Writing z = x + iy, we get:

12) 1 (x4+1)—iy r+1—iy
z) = . = )
(x+1D)+iy (z+1)—diy (z+1)24+y?
Thus,
B z+1 B —y
u(x’y)_(a:—i—l)?—i—y?’ U<x7y)_(x+1>2+y2‘
The absolute value is: 1
f(2)| =
1) = s

f(z) =e*

62(;v—&-iy) — e2Ti2y 62$(COS 2y + 2 sin 2y).

Hence,

2

u(z,y) =e“cosy, wv(zr,y)= e** sin 2y.

The absolute value is:

[f(2)] = €™
f(z) =sinz

Using sin 2z = sinx cosh y + 7 cos x sinh v,
u(z,y) =sinzcoshy, v(x,y) = coszsinhy.

The absolute value is:

1f(2)] = \/sin2 x cosh? y + cos? zsinh? y.
f(2) =cosz
Using cos z = cos x cosh y — ¢ sin z sinh y,
u(z,y) = cosxcoshy, w(x,y)= —sinzsinhy.

The absolute value is:

f(2)] = \/C082 x cosh? y + sin? z sinh? y.
f(z) =sinh z
Using sinh z = sinh x cos y + ¢ cosh z sin y,
u(z,y) = sinhzcosy, wv(x,y) = coshxsiny.

The absolute value is:

1f(2)] = \/sinh2 x cos?y + cosh? zsin? y.
f(2) = cosh z
Using cosh z = cosh x cos y + i sinh z sin y,
u(z,y) = coshzcosy, wv(x,y)=sinhxsiny.

The absolute value is:

1f(2)] = \/cosh2 x cos? y + sinh? zsin? y.

4



oz tiy (x+1)—diy (z+iy)(z+1—1y)
T @4 D) +iy @+l —iy (4 1)2+ 2
_x2+ixy—|—x+z'y—ixy+y2
B (x+1)2+y2
2+ x4y +y?
(z+1)% + ¢

Simplifying,
x4+ 1)+

- Y
u(z,y) = m, v(z,y) = m

()] = LY

(@ + 17 +y?

The absolute value is:

o f(2) ==
Expanding (z + 1y)? + 1,

B 1 -yt 1 —a2ay
TG = s T i)~ = T 1)+ Aty
Thus,
N P e S P
(22 — g2 + 1)2 + da2y? (22 — 2 + 1)2 + a2y
The absolute value is: .
1f(2)| = :
V(@2 — y? 4+ 1)2 + da2y?
« f(2)= 5
o) = @t w)? _ (atiy)z—ily—1))
z+i(y—1) w2+ (y — 1)
(@ — P+ 2iay) (@ — iy + 1)
- 22+ (y — 1)?
B x® — xy? + 2ixdy — 2%yi + v+ 2zy? + 2% — v — 2ay
- 22+ (y - 1)?
P ity 4yt oyt + o -yt — 2ay
N 22+ (y — 1)
B 3+ zy? — 2xy + (22y + v + 2% — y?)i
N 2+ (y —1)? |

Expanding and simplifying,

1) 2+ xy? — 2xy (z,9) 2y +yP 427 =y
w(x,y) = v, Yy) =
R (T §ER (-1
The absolute value is: 9 9
< +y
f(2)] = —= 5
2%+ (y —1)



4. Double exponentials.
Determine the real and imaginary part of the following functions:

C o g(z) = 1
fG) =, o) =37

where z = x + iy. Describe the function f in the two special cases x = 0 and y = 0.

Answer. Using the definition of the complex exponential, we find

flz) =¢

e* cos(y)+e” sin(y)i

z

=€

xT T o3 N
— e® cos(y)ee sin(y)i

= o cos) ( cos (€®sin(y)) + sin (e” sin(y)) z)

— 6693 cos(y) coS <€J: Sln(y)) + eer cos(y) sin (633 Sln(y)) 1.

e”cos(¥) and immedi-

We obtain the formula for g similarly. We can also observe that |f(z)| =e
ately conclude

—e” cos(y) —e® cos(y)

g(z) =e cos (e®sin(y)) — e sin (e” sin(y)) 7.

In the special case y = 0, this formula just gives back the double exponential e in the one
single variable x. In the special case x = 0, we get

f(2) = fliy) = W cos (sin(y)) + W sin (sin(y)) i.

[ |
5. Matrix representation of complex numbers.
Given a complex number z = x + yi, we define a matrix
_ (T Y
Show the following:
M(Zl+22) :M(21)+M(22), M<21'22> :M(Zl) 'M(ZQ),
M(z)"' =M (z7") if z #£0.
Answer. We write z; = x1 + 417 and zo = x5 + yoi. We easily obverse
T+ T2 —Y1— Y2 1~ T2 Y2
Mz + 2z2) = = + = M(z1) + M(22).
(21 +22) (yl TY2 T +$2) (—551 (1 ) (—332 Y2 ) (1) (22)
We also check that
Ty — Ty — T1To — —T1Yy — X
M(z1) - M(z) = < 1 3/1) ) ( 2 y2) _ ( 1T2 — Y1Y2 1Y2 2y1) = M(21 - 2).
(| Y2 T2 TiY2 + T2l T1T2 — Y12
Finally, if 2 = x + y7 is not zero, then
-1
— 1
- 2) - ()
y 22—y \—y =«
_ o x Y
M) =M (=) =M ( - ylz) = (xiyy"’ %y"’) .
Z-Z ety Py g2
NB: Any such matrix M := M(z) satisfies My; = Myy and My = —Mjs. [ |



6. Review Fourier series and Poisson problem.
Consider the boundary value problem of finding a function w : [0, 1] — R such that

u'(z) = x, 0<z<l,
u(0) = u(1) = 0.

Express the solution as a Fourier series.

Answer. We explore two possible solutions: either we solve the boundary value problem
manually and compute its Fourier series, or we first compute the Fourier series and from there
the Fourier series of the solution.

1. First approach To compute the Fourier series of the right-hand side (RHS), also known as
source term, f(z) = x and derive the solution u(z), we proceed as follows. We expand f(z) = z
as a Fourier sine series on the interval [0, 1],

o0
xr = Z fasin(nrz),
n=1
where the coefficients b,, satisfy the formula

1
o= 2/ zsin(nmz) dx.
0

A simple integration by parts provides

1 1 1 n+1 n+1
—1)nt 2(—1)7t
2/ esin(nre) de = 27D o L e = . CUTT 22D
0 nm o nm g nm nm
The function f(x) = x can thus be written
> 2(_1>n+1
= ————sl , 0<z <l
x ngl p sin(nmx) x

We assume that u(z) has the Fourier sine series of the form

oo
u(z) = Z b, sin(nmx).
n=1
Differentiating this twice produces

u'(z) = — Z bp(nm)? sin(nmr).

n=1

Equating the coefficients of u”(z) and f(x), we finally obtain the coefficients

- Z by(nm)?sin(nrr) = Z 2= sin(nmzx).

n=1 n=1 nm
2(—1 n+1
— (a2 = 22T
nm
2(—1)"
(n)?



This result coincides with the one obtained by directly solving the boundary value problem and
expanding the solution into a Fourier series, to be discussed next.
2. Second approach To begin with, we integrate u”(z) = x twice,

1 1
u'(z) = §x2 +C, u(z) = 6x3 +Cz + D,

and apply the boundary conditions u(0) = 0 and u(1) = 0 to determine the coefficients:
w0)=0 = D=0

1 1
uw(l) =0 = 6+C:0 — C:—g.

We conclude that the solution has the form

ZS —X

From here, we compute the Fourier series expansion, writing u(x) = 5 as

u(z) = Z b, sin(nmx)

with unknown coefficients b,,. We must calculate

1 3 _ 1 1
b, = 2/ — sin(nmzx) dr = —/ (2% — 2) sin(nmr) dx.
o 6 3 Jo

Some simple computation, via integration by parts, shows

by — % ( /O ' sin(nme) dir — /0 ' sin(nm) da:) _ % ) 2((_1)71‘

Thus we arrive at the Fourier series of the solution

u(z) = Zl 2((71_73)): sin(nmzx),

in agreement with our first approach to this problem. [ |



