
MATH-207(d) Analysis IV
Exercise session 5

Exercice 1. Compute the following integrals, where γ is a parameterization of the unit circle:

A =

∫
γ

cos z

z(z − 2)
, B =

∫
γ

exp z3 + z

z(z + 5)
, C =

∫
γ

exp z

z(z + 2i)
, D =

∫
γ

sin z

z4(z − 3i)
.

Answer. Throughout this exercise, we apply the Cauchy integral formula. Specifically, we
use the following variant: ∫

γ

g(z)

zn+1
dz =

2πi

n!
g(n)(0).

We proceed as follows.

(a) With g(z) = cos(z)/(z − 2) and n = 0, we get

A =

∫
γ

g(z)

z
dz = 2πi · cos(0)

−2
= −πi.

(b) With g(z) = (exp z3 + z)/(z + 5) and n = 0, we get

B =

∫
γ

g(z)

z
dz = 2πi · exp(0

3) + 0

5
=

2πi

5
.

(c) With g(z) = exp(z)/(z + 2i) and n = 0, we get

C =

∫
γ

g(z)

z
dz = 2πi · exp(0)

2i
= π.

(d) Finally, with g(z) = sin(z)/(z − 3i) and n = 3, we get

D =

∫
γ

g(z)

z3+1
dz =

2πi

3!
g(3)(0)..

We compute the third derivative at z = 0, using sin(0) = 0 and cos(0) = 1:

g(3)(z) = sin(z) ·
(

1

z − 3i

)′′′

+ 3 sin′(z) ·
(

1

z − 3i

)′′

+ 3 sin′′(z) ·
(

1

z − 3i

)′

+ sin′′′(z) ·
(

1

z − 3i

)
= sin(z) ·

(
1

z − 3i

)′′′

+ 3 cos(z) ·
(

1

z − 3i

)′′

− 3 sin(z) ·
(

1

z − 3i

)′

− cos(z) ·
(

1

z − 3i

)
= 3 cos(z) ·

(
1

z − 3i

)′′

− cos(z) ·
(

1

z − 3i

)
= 3

(
1

z − 3i

)′′

−
(

1

z − 3i

)
.
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Finally,

3

(
1

z − 3i

)′′

−
(

1

z − 3i

)
= 3(−1)(−2)

(
1

z − 3i

)3

−
(

1

z − 3i

)
= 3(−1)(−2)

1

−27i3
− 1

−3i
=

2

−9i3
+

1

3i
=

2

9i
+

1

3i
.

Putting this all together, one finds:

D =
2πi

3!

(
2

9i
+

1

3i

)
=

2π

3!

5

9
=

5

27
π.

■

Exercice 2. Consider f(z) = log(1 + z).

(a) Determine the largest region of C in which f is holomorphic.

(b) Compute the Taylor series in z0 = 0 and determine the radius of convergence.

(c) Compute the Taylor series in z0 = i and determine the radius of convergence.

Answer.

(a) Since the function log y is holomorphic on

C \ {y ∈ C : Im y = 0,Re y ≤ 0}

for y = 1 + z we conclude that log(1 + z) is holomorphic on

D = C \ {z ∈ C : Im z = 0,Re z ≤ −1}.

(b) Since f is holomorphic at z0 = 0, the Laurent series is the Taylor series, which reads

f(z) = log(1 + z) =
∞∑
n=1

(−1)n+1

n
zn at z0 = 0.

One can recompute it by evaluating the derivatives f in z0 = 0 and using the Taylor series
formula

+∞∑
n=0

f (n)(z0)

n!
(z − z0)

n.

The Taylor series in z0 = 0 is convergent over the largest open disk around z0 over which
f is convergent. That disk has radius 1, because z = −1 there is a singularity. Hence the
radius of convergence is R = 1.

We can also verify this directly:

|z| ≤ lim
n→∞

∣∣∣∣ cn
cn+1

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−1)n+1

n
(−1)n+2

n+1

∣∣∣∣∣ = lim
n→∞

n+ 1

n
= 1

(c) For z0 = i, we compute the derivatives of f . We have

f ′(z) = 1/(1 + z), f ′′(z) = −1/(1 + z)2, f ′′′(z) = 2/(1 + z)3.
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And in general

f (n)(z) = (−1)n+1 (n− 1)!

(1 + z)n
.

Thus we get

f (n)(i) = (−1)n+1 (n− 1)!

(1 + i)n
.

from which

f(z) = log(1 + i) =
∞∑
n=1

(−1)n+1

n(1 + i)n
(z − i)n.

The Taylor series in z0 = i is convergent over the largest open disk around z0 over which
f is convergent. That disk has radius |i + 1| =

√
2, because thats the distance from i to

the singularity at z = −1. Hence the radius of convergence is R =
√
2.

One can also verify that directly:

|z − i| ≤ lim
n→∞

∣∣∣∣ cn
cn+1

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
(−1)n+1

n(1+i)n

(−1)n+2

(n+1)(1+i)n+1

∣∣∣∣∣∣
= lim

n→∞
|(1 + i)|n+ 1

n
=

√
12 + 12 =

√
2.

■

Exercice 3. Find the coefficients of the Taylor series of the following functions around the
specified point.

(a) f(z) = ez and z0 = 2

(b) f(z) = ez and z0 = πı/2

(c) f(z) = ez
2
and z0 = 0

(d) f(z) = z3 and z0 = 1

(e) f(z) = cos (z − 3) and z0 = 3

(f) f(z) = sin(z)2 and z0 = 0

Answer. Let us first recall the definition of the Taylor series for smooth functions of a real
variable. Let U be an open subset of R, and let f : U ⊂ R → R be smooth. Then the Taylor
series of f at the point c ∈ U is the infinite series

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− c)n,

where f (n)(a) is the nth derivative of the function f evaluated at x = a.
The Taylor series for holomorphic functions of a complex variable are defined in the same
manner. Indeed, let Ω be an open subset of C, and let f : Ω ⊂ C → C be holomorphic. Then
the Taylor series of f at the point z0 ∈ Ω is the infinite series

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)

n, (1)

where f (n)(z0) is the nth complex derivative of the function f evaluated at z = z0.
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(a) Recall that the complex exponential function is holomorphic on the entire complex plane
and we have that f ′(z) = d

dz
exp(z) = exp(z) for all z ∈ C. Using then Definition (1) of

the Taylor series, we deduce that

an =
f (n)(2)

n!
=

e2

n!
.

(b) As before, we use the fact that the complex exponential function is holomorphic on the
entire complex plane and f ′(z) = d

dz
exp(z) = exp(z) for all z ∈ C. Consequently,

Definition (1) of the Taylor series, yields in this case that

an =
f (n)(2)

n!
=

eπı/2

n!
=

cos(π/2) + ı sin(π/2)

n!
=

ı

n!
.

(c) As the composition of two holomorphic functions, namely, the exponential function and
the quadratic polynomial, the function f(z) = ez

2
is clearly holomorphic on the entire

complex plane. Unfortunately, a direct computation of the higher order complex deriva-
tives of f is tedious, so we adopt an indirect approach. We begin by observing that the
Taylor series of the function g(y) = exp(y) at any y0 = 0 is given by

g(y) =
∞∑
n=0

1

n!
yn.

Therefore, to obtain the Taylor series of f(z) = exp(z2) at z0 = 0, we simply substitute
y = z2 and deduce that

f(z) =
∞∑
n=0

1

n!
(z2)n =

∞∑
n=0

1

n!
z2n.

Comparing with Definition 1 of the Taylor series, we see that the Taylor coefficients of f
are given by

a2n =
1

n!
and a2n+1 = 0 ∀n ∈ N.

Let us remark here that this subsitution is allowed precisely because exp(z) equals the
Taylor series for all z ∈ C.

(d) As a polynomial, f(z) = z3 is holomorphic on the complex plane and we have

f ′(z) = 3z2; f ′′(z) = 6z; f ′′′(z) = 6; f (n)(z) = 0 ∀n ≥ 4.

Comparing with Definition 1 of the Taylor series, we see that the Taylor coefficients of f
are given by

a0 = f(z0) = 1; a1 = f ′(z0) = 3; a2 =
f ′′(z0)

2
= 3; a3 =

f ′′′(z0)

6
= 1;

an = f (n)(z0) = 0 ∀n ≥ 4.

In particular,

f(z) = 1 + 3(z − 1) + 3(z − 1)2 + (z − 1)3.
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(e) The function f(z) = cos(z − 3) is holomorphic on the complex plane and a simple calcu-
lation shows that

f (4n)(z0) = cos(z0 − 3); f (4n+1)(z0) = − sin(z0 − 3)

f (4n+2)(z0) = − cos(z0 − 3); f (4n+3)(z0) = − sin(z0) ∀n ∈ N.

Consequently, at z0 = 3, we have

f (4n)(z0) = 1; f (4n+1)(z0) = 0; f (4n+2)(z0) = −1; f (4n+3)(z0) = 0 ∀n ∈ N.

Comparing with Definition 1 of the Taylor series, we see that the Taylor coefficients of f
are given by

a4n =
1

(4n)!
; a4n+1 = 0; a4n+2 =

−1

(4n+ 2)!
; a4n+3 = 0 ∀n ∈ N.

This problem can also be solved by a substitution argument similar to the one carried out
in Exercise (c): we use the Taylor series of cos(x) around x0 = 0 and substitute x = z−3.

(f) As the product of two holomorphic functions, we see that f(z) = sin(z)2 is holomorphic
on the complex plane. Unfortunately, a direct computation of the complex derivatives of
sin(z)2 is tedious so we once gain rely on an indirect approach. We first use the well-known
double-angle identity to write

sin2(z) =
1− cos(2z)

2
.

It therefore suffices to compute the Taylor coefficients of g(z) = cos(2z) at z0 = 0. To
do so, we will use a substitution argument similar to one used before. Indeed, from the
previous exercise, we can immediately deduce that the Taylor series of h(y) = cos(y − 3)
at y0 = 3 is given by

h(y) =
∞∑
n=0

1

(4n)!
(y − 3)4n +

∞∑
n=0

−1

(4n+ 2)!
(y − 3)4n+2

or, alternatively, in more compact form

h(y) =
∞∑
n=0

(−1)n

(2n)!
(y − 3)2n.

Using now the substitution y = 2z+3, we deduce that the Taylor series of g(z) = cos(2z)
at z0 = 0 is given by

g(z) =
∞∑
n=0

24n

(4n)!
z4n +

∞∑
n=0

−24n+2

(4n+ 2)!
z4n+2

or, alternatively, in more compact form

g(z) =
∞∑
n=0

(−1)n22n

(2n)!
z2n =

∞∑
n=0

(−4)n

2n!
z2n.
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Consequently, with Definition 1 of the Taylor series, we see that the Taylor coefficients of
f are given by

a0 =
1

2
− 1

2
= 0,

a4n = − 24n

2(4n)!
∀n ≥ 1,

a4n+1 = 0 ∀n ≥ 0

a4n+2 =
24n+2

2(4n+ 2)!
∀n ≥ 0

a4n+3 = 0 ∀n ≥ 0

■

Exercice 4. Let γ be a simple regular closed curve whose interior contains z0 = 0. For any
integer k ∈ Z, explicitly compute the integral∫

γ

zkdz.

Hint: use the extended Cauchy theorem to replace γ by a curve that is easier to handle.

Answer. According to the extended Cauchy theorem, we can replace γ by the standard
parameterization of the unit circle: γ(t) = eit. We distinguish two cases for k: either k = −1
or k ̸= −1.
The case k = −1 was already discussed in the lecture. We compute∫

γ

z−1dz =

∫ 2π

0

e−it · ieitdt =
∫ 2π

0

i dt = 2πi.

The case k ̸= −1 is discussed as follows. We compute∫
γ

zkdz =

∫ 2π

0

(eit)k · ieitdt =
∫ 2π

0

iei(k+1)tdt.

Evaluating the integral yields:

i

i(k + 1)

[
ei(k+1)t

]2π
0

=
1

k + 1

[
ei(k+1)2π − e0

]
= 0.

Therefore, the computed integral is summarized as:∫
γ

zkdz =

{
2πi if k = −1,

0 if k ̸= −1.

We remark that the case k ≥ 0 can also be handled via the Cauchy theorem. However, the
case k < −1 needs extra attention. ■
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Extra Exercise. Cauchy-Riemann Equations.

Exercice 5. Let O ⊆ C be an open set. Recall that a function f : O → C is complex
differentiable at z0 ∈ O if the limit

f ′(z0) := lim
z→0

f(z)− f(z0)

z − z0
(2)

exists and is finite. A variant of the statement that we have seen in class is as follows.

Theorem: Suppose that f : O → C with f(x+ iy) = u(x, y) + v(x, y)i is a complex function
and that z0 = x0 + y0i. Then the following are equivalent:

(a) f is complex differentiable at z0 ∈ C.

(b) u, v : R2 → R are differentiable at z0 and satisfy the Cauchy-Riemann equations

∂xu = ∂y, ∂yu = −∂xv. (3)

In either case,

f ′(z0) = ∂xu(x0, y0) + ∂xv(x0, y0)i = ∂yv(x0, y0)− ∂yu(x0, y0)i

Prove that result. You can proceed with the following steps:

(a) Define a function g : O ⊆ R2 → R2 by setting

g(x, y) := (u(x, y), v(x, y)) .

Show that it is differentiable and study its Jacobian to prove that u, v are differentiable
and satisfy the Cauchy-Riemann equations.

(b) Conversely, given differentiable u, v : O ⊆ R2 → R satisfying the Cauchy-Riemann
equations, define g as above and prove that f is complex differentiable.

(c) Assuming that f is complex differentiable, use the definition of complex differentiability
and the definition of partial derivatives to find expressions for f ′.

Answer.

(a) We write the complex derivative of f at z0 as f
′(z0) = w0 = a0 + b0i. By definition of the

complex derivative,

w0 = lim
z→z0

f(z)− f(z0)

z − z0
(4)

Hence,

0 = lim
z→z0

(
w0 −

f(z)− f(z0)

z − z0

)
(5)
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We take the absolute value on both sides, and use that the absolute value is continuous
over the complex numbers:

0 =

∣∣∣∣ limz→z0

(
w0 −

f(z)− f(z0)

z − z0

)∣∣∣∣ (6)

= lim
z→z0

∣∣∣∣w0 −
f(z)− f(z0)

z − z0

∣∣∣∣ (7)

= lim
z→z0

∣∣∣∣f(z)− f(z0)− w0(z − z0)

z − z0

∣∣∣∣ (8)

= lim
h→0

∣∣∣∣f(z0 + h)− f(z0)− w0 · h
h

∣∣∣∣ (9)

= lim
h→0

|f(z0 + h)− f(z0)− w0 · h|
|h|

. (10)

We switch to the real point-of-view and introduce the auxiliary function

g(x, y) =

(
u(x, y)
v(x, y)

)
(11)

We now have

0 = lim
h→0

∣∣∣∣g(x0 + hx, y0 + hy)− g(x0, y0)−
(
a0 −b0
b0 a0

)
· h

∣∣∣∣
|h|

. (12)

By definition, the function g is differentiable at (x0, y0), and its Jacobian Dg(x0, y0) there
is

Dg(x0, y0) =

(
a0 −b0
b0 a0

)
(13)

However, we already know that

Dg(x0, y0) =

(
∂xu ∂yu
∂xv ∂yv

)
(14)

It follows that

a0 = ∂xu = ∂yv, b0 = ∂yu = −∂xv. (15)

(b) Now assume that u, v : O → R are differentiable at (x0, y0) and satisfy the Cauchy-
Riemann equations. Now, the function

g(x, y) =

(
u(x, y)
v(x, y)

)
is differentiable at (x0, y0) as well. From the definition of differentiability of multivariate
functions it follows that

lim
h→0

|g(x+ hx, y + hy)− g(x0, y0)−Dg(x0, y0) · h|
|h|

= 0

where Dg(x0, y0) is the Jacobian matrix

Dg(x0, y0) =

(
∂xu ∂yu
∂xv ∂yv

)
=

(
∂xu ∂yu
∂xv ∂yv

)
.
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In the last step, we have used the Cauchy-Riemann equations. Switching to the complex
point-of-view, we can identify the Jacobian matrix with the complex number

w0 = ∂xu(x0, y0) + ∂xv(x0, y0) · i = ∂yu(x0, y0) + ∂yv(x0, y0) · i. (16)

We let z0 = (x0, y0) and obtain the limit

0 = lim
h→0

|f(z0 + h)− f(z0)− w0 · h|
|h|

. (17)

Here, working the in the complex setting, the number h is now complex and the product
w0 · h is complex multiplication. Equivalently,

0 = lim
z→0

|f(z)− f(z0)− w0 · (z − z0)|
|z − z0|

(18)

= lim
z→0

∣∣∣∣f(z)− f(z0)− w0 · (z − z0)

z − z0

∣∣∣∣ (19)

= lim
z→0

∣∣∣∣f(z)− f(z0)

z − z0
− w0

∣∣∣∣ (20)

=

∣∣∣∣limz→0

f(z)− f(z0)

z − z0
− w0

∣∣∣∣ . (21)

Here, we have used that |a/b| = |a|/|b| for any complex numbers a, b ∈ C and the fact
that | · | is continuous over the complex numbers. We conclude that

lim
z→0

f(z)− f(z0)

z − z0
= w0. (22)

By definition, f is complex differetiable at z0 with f ′(z0) = w0.

(c) We have already found the desired formulas for f ′(z0). However, the following computa-
tions are interesting as well.

Since f is complex differentiable at z0, we can consider a family z = x + y0 such that
x → x0 and use the limit property:

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

= lim
x→x0

f(x+ y0i)− f(x0 + y0i)

x− x0

= lim
x→x0

(
u(x, y0)− u(x0, y0)

x− x0

+
v(x, y0)− v(x0, y0)

x− x0

i

)
= lim

x→x0

u(x, y0)− u(x0, y0)

x− x0

+
v(x, y0)− v(x0, y0)

x− x0

i

= ∂xu(x0, y0) + ∂xv(x0, y0)i.

Since f is complex differentiable at z0, we can consider a family z = x0 + y such that
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y → y0 and use the limit property:

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

= lim
y→y0

f(x0 + yi)− f(x0 + y0i)

yi− y0i

= lim
y→y0

(
u(x0, y)− u(x0, y0)

yi− y0i
+

v(x0, y)− v(x0, y0)

yi− y0i
i

)
= lim

y→y0

u(x0, y)− u(x0, y0)

yi− y0i
+ lim

y→y0

v(x0, y)− v(x0, y0)

yi− y0i
i

= lim
y→y0

−∂yu(x0, y0)i+ ∂yv(x0, y0).

From these equations, it follows that

f ′(z0) = ∂xu(x0, y0) + ∂xv(x0, y0)i

= ∂yv(x0, y0)− ∂yu(x0, y0)i.

NB: Any function g : R2 → R2 can be interpreted as a function f : C → C. In addition to that,
if g is differentiable with a Jacobian whose entries satisfy the Cauchy-Riemann equations, then
this g also represents a complex differentiable function. ■
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