MATH-207(d) Analysis IV

Exercise session 5

Exercice 1. Compute the following integrals, where v is a parameterization of the unit circle:

3 .
cos 2 expz® + z exp z sin z
A=| ——, B=| ——+— (C=|——7"—" D=[|——.
[YZ(Z—Q)’ /7 2(z+5) "’ [Yz(z+2i)7 /yz4(z—3i)
Answer. Throughout this exercise, we apply the Cauchy integral formula. Specifically, we

use the following variant:
9(z) . 2mi
/"y Zn+1 dz = Fg (0)

We proceed as follows.

(a) With ¢g(z) = cos(z)/(z — 2) and n = 0, we get
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(b) With g(z) = (exp2® +2)/(z +5) and n = 0, we get
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(¢) With g(2) = exp(2)/(z + 2i) and n = 0, we get
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(d) Finally, with g(z) = sin(z)/(z — 3i) and n = 3, we get

9(2) 2T (g

We compute the third derivative at z = 0, using sin(0) = 0 and cos(0) = 1:

~ sin(2) - <Z E 32) + 3cos(2) (Z ! 32> _ 3sin(2) - (z ! 3@,)/ ~ cos(z) <Z E 32,)
— 3cos(z) (Z E 32) ~ cos(2) - (Z ! 32,)
:3<zj&)”_<zj&)'




Finally,

s (z —1 3@),, B (z —1 32’) =3(-D(=2) (z —1 3z‘)3 - (z —1 32') - 3<_1)(_2)—2172'3 - —132' -

Putting this all together, one finds:
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Exercice 2. Consider f(z) = log(1 + 2).
(a) Determine the largest region of C in which f is holomorphic.
(b) Compute the Taylor series in zy = 0 and determine the radius of convergence.

(c) Compute the Taylor series in zp = ¢ and determine the radius of convergence.

Answer.

(a) Since the function logy is holomorphic on
C\{yeC:Imy=0,Rey <0}
for y = 1 4 z we conclude that log(1 + z) is holomorphic on
D=C\{z€eC:Imz=0,Rez < —1}.

(b) Since f is holomorphic at zy = 0, the Laurent series is the Taylor series, which reads

(=1

f(z)=log(1+2) =3

n=1

z"at zg = 0.
n

One can recompute it by evaluating the derivatives f in zy = 0 and using the Taylor series

formula .
X )y,
Zf (' 0) (z — 20)".
n=0 :

n

The Taylor series in zg = 0 is convergent over the largest open disk around z; over which
f is convergent. That disk has radius 1, because z = —1 there is a singularity. Hence the
radius of convergence is R = 1.

We can also verify this directly:

(_1)n+1 + 1
|z| < lim = lim | —%=|= lim =1
n—oo Cn-l—l n—00 % n—oo n
n

(¢) For zg = i, we compute the derivatives of f. We have

F)=1/(1+2), f'(z)=-1/0+2)?% ["(z)=2/01+2)".
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And in general

Thus we get : )
gy = (_pymr = D!

from which
L e (=
f(z) =log(1 +1) :Zm

(z —1)".

The Taylor series in zy = ¢ is convergent over the largest open disk around zy over which
f is convergent. That disk has radius |i + 1| = /2, because thats the distance from i to
the singularity at z = —1. Hence the radius of convergence is R = v/2.

One can also verify that directly:

(—1)ntt

Cn . n )"
|z —i| < lim = lim (1;7&2
n—oco |Cppp| n—oo | (D2
(D)1

. n+1
= lim [(1+74)] = V12412 =12
n—00 n

Exercice 3. Find the coefficients of the Taylor series of the following functions around the
specified point.

(a) f(z) =e*and zy =2

) f(2)
(¢) f(z) =¢€* and zp =
(d) f(z) =2%and 2o =
(e) f(z) =cos(z—3) and zy =3
(f) f(z) =sin(z)? and 2o =0

Answer. Let us first recall the definition of the Taylor series for smooth functions of a real
variable. Let U be an open subset of R, and let f: U C R — R be smooth. Then the Taylor
series of f at the point ¢ € U is the infinite series

£ (g
fwy =S Lo

n:

where f(™(a) is the n'™ derivative of the function f evaluated at = a.

The Taylor series for holomorphic functions of a complex variable are defined in the same
manner. Indeed, let €2 be an open subset of C, and let f: Q@ C C — C be holomorphic. Then
the Taylor series of f at the point 2y € Q is the infinite series

< £0) (4,
f) = Ty )

n

n=0

where f((z) is the n'" complex derivative of the function f evaluated at z = 2.
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(a)

Recall that the complex exponential function is holomorphic on the entire complex plane
and we have that f'(z) = <L exp(z) = exp(z) for all z € C. Using then Definition (1) of
the Taylor series, we deduce that

As before, we use the fact that the complex exponential function is holomorphic on the
entire complex plane and f'(z) = Lexp(z) = exp(z) for all z € C. Consequently,
Definition (1) of the Taylor series, yields in this case that

fM2) ™2 cos(n/2) +asin(r/2) e
nl nl n! ol

Ap =

As the composition of two holomorphic functions, namely, the exponential function and
the quadratic polynomial, the function f(z) = e is clearly holomorphic on the entire
complex plane. Unfortunately, a direct computation of the higher order complex deriva-
tives of f is tedious, so we adopt an indirect approach. We begin by observing that the
Taylor series of the function g(y) = exp(y) at any yo = 0 is given by

D=3
n=0 n
Therefore, to obtain the Taylor series of f(z) = exp(2?) at zg = 0, we simply substitute
y = 2% and deduce that

1 1
Zﬁ ZmZQ

n=0 n=0
Comparing with Definition 1 of the Taylor series, we see that the Taylor coefficients of f
are given by

1
(gn = — and ag,r 1 =0 VneN.
n!

Let us remark here that this subsitution is allowed precisely because exp(z) equals the
Taylor series for all z € C.

As a polynomial, f(z) = 2% is holomorphic on the complex plane and we have
fl(z)=32% f'(2) =62 ["(2)=6; f"(z)=0VYn>4.

Comparing with Definition 1 of the Taylor series, we see that the Taylor coefficients of f
are given by

f// (ZO)
2

"
— 3 ang (20) —1;

ao:f(zo):1§ a1:f’(20)23; az = 6

an = f(2) =0 VYn>4.
In particular,
f(z)=14+3(z-1)+3(z—172+ (2 —1)°.
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(e)

The function f(z) = cos(z — 3) is holomorphic on the complex plane and a simple calcu-
lation shows that

f(4n)(zo) = cos(z — 3); f(4n+1)(20) = —sin(z - 3)
FA () = —cos(zo — 3);  FU)(20) = — sin(z) Vn € N.

Consequently, at zp = 3, we have
f(4n)(20) =1 f(4n+1)<20) = 0; f(4n+2)<20) =-1 f(4n+3)(20) =0 Vn e N.

Comparing with Definition 1 of the Taylor series, we see that the Taylor coefficients of f
are given by
L 0 o 0 VneN
Ayn = 3 Qany1 = U5 Qqny2 = v Qany3 = n .
4 (@n)! dn+1 dn+2 (4n +2)! An+3
This problem can also be solved by a substitution argument similar to the one carried out
in Exercise (c): we use the Taylor series of cos(z) around zy = 0 and substitute x = z—3.

As the product of two holomorphic functions, we see that f(z) = sin(z)? is holomorphic
on the complex plane. Unfortunately, a direct computation of the complex derivatives of
sin(z)? is tedious so we once gain rely on an indirect approach. We first use the well-known
double-angle identity to write

1-— 2
sinQ(z) = —C;S( Z)

It therefore suffices to compute the Taylor coefficients of g(z) = cos(2z) at zp = 0. To
do so, we will use a substitution argument similar to one used before. Indeed, from the
previous exercise, we can immediately deduce that the Taylor series of h(y) = cos(y — 3)
at yo = 3 is given by

Using now the substitution y = 2z + 3, we deduce that the Taylor series of g(z) = cos(2z2)
at zg = 0 is given by

( ) i 24n . i _24n+2 g2
g(2) = 2+ A
“— (4n)! “— (4n +2)!
or, alternatively, in more compact form
IR G TR e N G Y
9(2) = ZO @n)! ZO onl -



Consequently, with Definition 1 of the Taylor series, we see that the Taylor coefficients of

f are given by

L
ag = 9 9 — Y
24n
n — Vn > ]-7
“4 2(n)l "
Aqn+1 = 0 Vn >0
24n+2
BT TR
Ggnyz =0 Vn >0

Exercice 4. Let v be a simple regular closed curve whose interior contains zy = 0. For any

integer k € 7Z, explicitly compute the integral

/zkdz.
¥

Hint: use the extended Cauchy theorem to replace v by a curve that is easier to handle.

Answer. According to the extended Cauchy theorem, we can replace + by the standard

parameterization of the unit circle: y(t) = €. We distinguish two cases for k: either k = —1
or k # —1.
The case k£ = —1 was already discussed in the lecture. We compute

27 27
/zldz = / e geldt = / 1dt = 2mi.
¥ 0 0

The case k # —1 is discussed as follows. We compute

2 27
/zkdz :/ (e™YE - deltdt :/ ie' Dt
0% 0 0

Evaluating the integral yields:

i [ei(k—i—l)t]Qﬂ' 1 [ei(k+1)27r . 60] —0.

i(k+1) 0 k41

Therefore, the computed integral is summarized as:

/dezz 2mi i k= -1,
- 0 it k # —1.

We remark that the case £ > 0 can also be handled via the Cauchy theorem.

case k < —1 needs extra attention.

However, the



Extra Exercise. Cauchy-Riemann Equations.

Exercice 5. Let O C C be an open set. Recall that a function f : O — C is complex
differentiable at zy € O if the limit

F(z0) = tim LB =/ (20) @)

z—0 zZ— 2

exists and is finite. A variant of the statement that we have seen in class is as follows.

Theorem: Suppose that f: O — C with f(x +1iy) = u(z,y) + v(z,y)i is a complex function
and that zy = xg + yot. Then the following are equivalent:

(a) f is complex differentiable at z, € C.

(b) u,v:R* — R are differentiable at z; and satisfy the Cauchy-Riemann equations

Opu =0y, Oyu = —0,0. (3)

In either case,
f'(20) = Owu(zo, yo) + Opv (20, y0)i = Oyv(wo,Yo) — Oyu(xo, yo)i
Prove that result. You can proceed with the following steps:

(a) Define a function g : O C R? — R? by setting

9(w,y) = (u(z,y),v(r,y)).

Show that it is differentiable and study its Jacobian to prove that u,v are differentiable
and satisfy the Cauchy-Riemann equations.

(b) Conversely, given differentiable u,v : O C R? — R satisfying the Cauchy-Riemann
equations, define g as above and prove that f is complex differentiable.

(c) Assuming that f is complex differentiable, use the definition of complex differentiability
and the definition of partial derivatives to find expressions for f’.
Answer.

(a) We write the complex derivative of f at zg as f'(z) = wy = ag + bpi. By definition of the
complex derivative,

wy = lim &) = f(=0) (4)
220 zZ— 20
Hence,

0= tim (- S =IE)) 5)

Z—20 Z — ZO



We take the absolute value on both sides, and use that the absolute value is continuous
over the complex numbers:

= lim |up — LB /) 7)
_ :m Fe) — $len) otz 20) 5
_ 1; oot 1) - iéﬁ) ot o
gy Lt o) = o ] (10)

We switch to the real point-of-view and introduce the auxiliary function

st = (4600 (1)

v(z,y)

We now have

—b
g(zo + hy,yo + hy) — g(z0,y0) — <Z§ aoo) : h'

0 = lim

h—0 ‘h| (12)

By definition, the function g is differentiable at (xg, 3o), and its Jacobian Dg(zo, yo) there
is

Dyg(zo,y0) = (Zg _b0> (13)

Qg

However, we already know that

(0w Oyu
Dg<x07y0) = <6xv ayv) (14)
It follows that
ap = Oyu = Oyv, by = Oyu = —0,v. (15)

(b) Now assume that u,v : @ — R are differentiable at (zo,yo) and satisfy the Cauchy-
Riemann equations. Now, the function

o= (150

v(z,y)

is differentiable at (xo, yo) as well. From the definition of differentiability of multivariate
functions it follows that

lim \9(x + ha,y + hy) — g(z0, yo) — Dg(z0, yo) - Al

B0 1| =0

where Dg(xg, o) is the Jacobian matrix

_ (Owu Oyu\ _ [(Oyu Oyu
Dg(zo,y0) = <3xU 3yv) - (&Ev ayv) )



In the last step, we have used the Cauchy-Riemann equations. Switching to the complex
point-of-view, we can identify the Jacobian matrix with the complex number

wo = 0yu(xo, Yo) + Oxv(x0, Yo) - @ = Oyu(zo, Yo) + Oyv(xo, Yo) - i. (16)
We let zp = (x0, o) and obtain the limit

0 = lim |f(20+h)—f(20)—w0'h|.
h—0 |h|

(17)

Here, working the in the complex setting, the number A is now complex and the product
wyp - h is complex multiplication. Equivalently,

|f(2) = f(20) —wo - (2 — 20)|

= li 1
0 zlE}I(-ﬁl] |Z — ZO| ( 8)
= lim | LD = f () Z w0 (2 = ) (19)
— lim f) = flz0) wo‘ (20)
2—0 Z— 2
Ny £ = f(=0) ‘ (21)
2z—0 Z— 2
Here, we have used that |a/b| = |a|/|b| for any complex numbers a,b € C and the fact
that | - | is continuous over the complex numbers. We conclude that
lim f(2) = fz0) _ wo. (22)

z—0 z — ZO
By definition, f is complex differetiable at zg with f’(29) = wy.
We have already found the desired formulas for f’(zy). However, the following computa-

tions are interesting as well.

Since f is complex differentiable at z5, we can consider a family z = x + gy, such that
x — xg and use the limit property:

o) = Jig ) = f(20)
(=) = lim ——— -

f(x 4 yo1) — f(x0 + yoi)

= lim
T—TQ xr — xO

= lim (u(x,yo) — u(o, Yo) i v(x, yo) — U(xoyyo)Z)
T—T0 xr — 330 T — I‘O

= lim w(@, yo) — u(zo, yo) + v(z,yo) — U(xo;yo)z'

T—TQ T — 2o r — X
= Opu(x0,Yo) + Oxv(20, Yo

Since f is complex differentiable at zy, we can consider a family z = xy + y such that



y — 1o and use the limit property:

f(z) = f(%)

f'(z0) = lim

Z—20 zZ— 20

— lim fwo +yi) — fwo + yoi)
T Yt — Yol

— lim (u(xo, y) — U(%”o,yo) n 0(370,?/) - U(%"o;?/o)@-)
y—yo Yl — Yol Yl — Yol

— im u(xg,y). — u(@o,yo) 4 Tim 'U(I'an). — U({”ovyo)i
Y=o yi — Yol Y=o Yl — Yol

= lim —0yu(zo,yo)t + 0yv(zo, Yo)-

Y—Yo
From these equations, it follows that

f'(20) = Opu(o, yo) + 0xv(xo, Yo)?
= 0,v(x0,Yo) — Oyu(zo, Yo)i.

NB: Any function g : R? — R? can be interpreted as a function f : C — C. In addition to that,
if g is differentiable with a Jacobian whose entries satisfy the Cauchy-Riemann equations, then
this ¢ also represents a complex differentiable function. [ |
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