

MATH-207(d) Analysis IV

Exercise session 4

1. Integrals on circles.

Let $\gamma_1 := \{z \in \mathbb{C} : |z| = 1\}$ be the circle in the complex plane with center 0 and radius 1 and $\gamma_2 := \{z \in \mathbb{C} : |z - 2| = 1\}$ the circle with center 2 and radius 1. Compute the value of the following integrals, some of which have been discussed in the lecture.

(a) $\int_{\gamma_1} \frac{1}{z} dz.$

(b) $\int_{\gamma_1} \frac{1}{z^2} dz.$

(c) $\int_{\gamma_2} \frac{1}{z} dz.$

(d) $\int_{\gamma_2} \frac{1}{z^2} dz.$

2. More integrals on circles

Compute the following integrals.

(a) $\int_{\gamma} \frac{e^{2z}}{z} dz$ with $\gamma = \{z \in \mathbb{C} : |z| = 2\}.$

(b) $\int_{\gamma} \frac{z^3 + 2z^2 + 2}{z - 2i} dz$ with $\gamma = \{z \in \mathbb{C} : |z - 2i| = \frac{1}{4}\}.$

(c) $\int_{\gamma} \frac{\sin(2z^2 + 3z + 1)}{z - \pi} dz$ with $\gamma = \{z \in \mathbb{C} : |z - \pi| = 1\}.$

(d) $\int_{\gamma} \frac{3z^2 + 2z + \sin(z+1)}{(z-2)^2} dz$ with $\gamma = \{z \in \mathbb{C} : |z - 2| = 1\}.$

(e) $\int_{\gamma} \frac{e^z}{z(z+2)} dz$ with $\gamma = \{z \in \mathbb{C} : |z| = 1\}.$

3. Another integral on a closed curve.

Let γ be any simple, closed and piecewise regular curve. Discuss the value of

$$\int_{\gamma} \frac{5z^2 - 3z + 2}{(z - 1)^3} dz$$

depending on the curve γ . You must distinguish the cases:

- The pole of the integrand lies within the region encircled by the curve
- The pole of the integrand lies outside of the region encircled by the curve
- The pole lies on the curve

4. Yet another integral.

Compute the integral

$$\int_{\gamma} \frac{e^{z^2}}{(z-1)^2(z^2+4)} dz$$

in the following cases :

- (a) γ is the circle centered in $z = 1$ of radius 1.
- (b) γ is the boundary of the rectangle $\{z \in \mathbb{C} : -\frac{1}{2} \leq \operatorname{Re}(z) \leq \frac{1}{2}, 0 \leq \operatorname{Im}(z) \leq 4\}$.
- (c) γ is the boundary of the rectangle $\{z \in \mathbb{C} : -2 \leq \operatorname{Re}(z) \leq 0, -1 \leq \operatorname{Im}(z) \leq 1\}$.

5. Difficult integrals made “easy”.

Complex analysis can be a powerful tool to calculate complicated integrals, even if those integrals do not involve complex numbers at all! The goal of this exercise is to show that

$$\int_{-\infty}^{+\infty} e^{-x^2} \cos(2bx) dx = \sqrt{\pi} e^{-b^2} \quad (1)$$

$$\int_{-\infty}^{+\infty} e^{-x^2} \sin(2bx) dx = 0. \quad (2)$$

- (a) Argue that $f(z) = e^{-z^2}$ is holomorphic on \mathbb{C} .
- (b) Consider the path $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$ shown in Figure 1

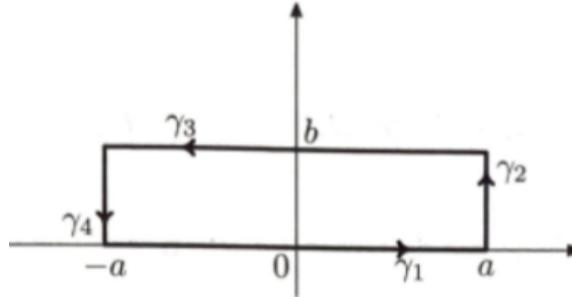


Figure 1: Path in complex plane for Exercise 4(b).

- (i) Argue that $\int_{\gamma} f(z) dz = 0$.
- (ii) Show that $\lim_{a \rightarrow +\infty} \int_{\gamma_2} f(z) dz = \lim_{a \rightarrow +\infty} \int_{\gamma_4} f(z) dz = 0$.
- (iii) Using that $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$, conclude by showing (1) and (2).

6. Complex numbers and fluid dynamics.

Complex analysis has been a tool in fluid dynamics for a long time. Let $\mathcal{D} \subseteq \mathbb{R}^2$ be an open set. A vector field $\vec{F} : \mathcal{D} \rightarrow \mathbb{R}^2$ represents the velocity field of a fluid flow. The flow is called irrotational if $\operatorname{curl} \vec{F} = 0$ and incompressible if $\operatorname{div} \vec{F} = 0$ over \mathcal{O} .

- (a) Show that the vector field

$$\vec{F} : \mathbb{R}^2 \setminus \{0\} \rightarrow \mathbb{R}^2, \quad (x_1, x_2) \mapsto \left(\frac{x_1}{x_1^2 + x_2^2}, \frac{x_2}{x_1^2 + x_2^2} \right) \quad (3)$$

is irrotational and incompressible.

(b) Represent \vec{F} by a complex function $f : \mathcal{O} \rightarrow \mathbb{C}$ for some open set $\mathcal{O} \subseteq \mathbb{C}$. Show that f is complex differentiable.

7. Contour integration.

Compute the following contour integrals.

(a) $\int_{\gamma} (z^2 + 1) dz$ where $\gamma = [1, 1+i]$ (segment between 1 and $1+i$).
(b) $\int_{\gamma} \operatorname{Re}(z^2) dz$, where $\gamma = \{z \in \mathbb{C} : |z| = 1\}$ (unit circle in 0).

Extra. Understanding complex numbers, once more If $z = x+iy$ is a complex number, what is the geometric interpretation of iz ? More generally, for any $\theta \in \mathbb{R}$, what is the geometric interpretation of $e^{\theta i}z$? Finally, interpret this in terms of matrices.