

MATH-207(d) Analysis IV

Exercise session 3

1. Holomorphic functions.

Show that the following functions are holomorphic on \mathbb{C} and compute their derivative.

$$(a) \cos(z) = \frac{e^{iz} + e^{-iz}}{2}.$$

$$(b) \cosh(z) = \frac{e^z + e^{-z}}{2}.$$

$$(c) \sinh(z) = \frac{e^z - e^{-z}}{2}.$$

2. Holomorphic functions and harmonic maps.

Let $z = x + iy$, for $x, y \in \mathbb{R}$ and consider $f(z) = u(x, y) + iv(x, y)$, with $u, v \in C^2$. Show that if f is holomorphic on an open subset $\Omega \subseteq \mathbb{C}$, then u and v are harmonic functions, i.e.

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{and} \quad \Delta v = 0$$

3. More Holomorphic functions

Let $z = x + iy$, for $x, y \in \mathbb{R}$ and consider the function

$$f(z) = e^z = e^x e^{iy}.$$

Show that this function is holomorphic on \mathbb{C} and compute its complex derivative.

4. Verifying Complex Differentiability

Express each of the following functions in the form

$$f(z) = u(x, y) + iv(x, y),$$

where u and v are real-valued functions and we represent any $z \in \mathbb{C}$ as $z = x + iy$ for some $x, y \in \mathbb{R}$.

Verify that the Cauchy-Riemann equations hold and compute the complex derivative.

$$(a) \ f(z) = z^4 \quad \text{over } \mathbb{C}.$$

$$(b) \ f(z) = e^{2z} \quad \text{over } \mathbb{C}.$$

$$(c) \ f(z) = 2z^2 + 1 \quad \text{over } \mathbb{C}.$$

$$(d) \ f(z) = \frac{1}{z} \quad \text{over } \mathbb{C} \setminus \{0\}.$$

$$(e) \ f(z) = \frac{1}{z^2} \quad \text{over } \mathbb{C} \setminus \{0\}.$$

5. The complex logarithm.

Let $z = x + iy$, for $x, y \in \mathbb{R}$ and denote $|z| = \sqrt{x^2 + y^2}$ the modulus of z and $\arg z$ its argument. The (complex) logarithm of z is defined as

$$\log(z) = \log|z| + i \arg z, \quad (1)$$

where $-\pi < \arg z \leq \pi$ and $\log|z|$ is the natural logarithm of the real number $|z|$. Show that:

- (a) The complex logarithm is well defined on $\mathbb{C} \setminus \{0\}$.
- (b) The complex logarithm is holomorphic on

$$\mathcal{O} = \mathbb{C} \setminus \{z \in \mathbb{C} : \operatorname{Im} z = 0 \text{ and } \operatorname{Re} z \leq 0\}$$

and the derivative is $\frac{d \log(z)}{dz} = \frac{1}{z}$, $\forall z \in \mathcal{O}$. *You are only expected to show this when the real part is positive, that is, $\operatorname{Re} z > 0$*

6. The complex power.

Let $\gamma \in \mathbb{C}$ and define $f(z) = z^\gamma = e^{\gamma \log(z)}$.

- (a) Show that in general f is holomorphic on $\mathcal{O} = \mathbb{C} \setminus \{z \in \mathbb{C} : \operatorname{Im} z = 0 \text{ and } \operatorname{Re} z \leq 0\}$ and the derivative is $f'(z) = \gamma z^{\gamma-1}$.
- (b) What can we say about the case $\gamma \in \mathbb{N}$?

7. Divergence and curl.

Suppose that $f(z) = u(x, y) + v(x, y)i$ is holomorphic. We define the vector field

$$F(x, y) = \begin{pmatrix} v \\ u \end{pmatrix}.$$

What is the divergence and the curl of F ?