

27.03.2025

Example: Let $f(z) = \frac{z}{\sin z}$ and $z_0 = 0$

$$f(z) = \frac{z}{z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots} = \frac{1}{1 - \frac{z^2}{3!} + \frac{z^4}{5!} + \dots}$$

$$f(z_0) = \lim_{z \rightarrow z_0} f(z) = \frac{1}{1} = 1$$

The function is holomorphic at $z_0 = 0$.

Example Let $f(z) = \frac{e^z - 1 - z}{z^2}$ and $z_0 = 0$

$$f(z) = \frac{\left(\sum_{n=0}^{\infty} \frac{z^n}{n!} \right) - 1 - z}{z^2} = \frac{z^2/2! + z^3/3! + z^4/4! + \dots}{z^2}$$

$$= \frac{1}{2!} + \frac{z}{3!} + \frac{z^2}{4!} + \dots$$

The function is holomorphic, in particular,

$$f(z_0) = \frac{1}{2!} = \frac{1}{2}$$

Summary: if the numerator and denominator have the leading power in their Laurent series, then we factor out the common power $(z - z_0)^m$ and take the limit $z \rightarrow z_0$.

c) Suppose that we have Laurent series

$$p(z) = a_k (z - z_0)^k + a_{k+1} (z - z_0)^{k+1} + \dots \quad a_k \neq 0$$

$$q(z) = b_\ell (z - z_0)^\ell + b_{\ell+1} (z - z_0)^{\ell+1} + \dots \quad b_\ell \neq 0$$

$$\text{Let } f(z) = \frac{p(z)}{q(z)}$$

We have discussed the case $k = \ell$ already. Next, $k \neq \ell$.

If $k \geq l$, then f is holomorphic at z_0 and

$$f(z_0) = \lim_{z \rightarrow z_0} \frac{a_k(z - z_0)^k + \dots}{b_l(z - z_0)^l + \dots}$$

$$= \lim_{z \rightarrow z_0} \frac{a_k(z - z_0)^{k-l} + \dots}{b_l + \dots}$$

reduce by common factor
 $(z - z_0)^l$

Since $b_l \neq 0$, the limit goes to a finite value in \mathbb{C} , namely:

$$\text{If } k = l, \text{ then } f(z_0) = \frac{a_k}{b_l}$$

$$\text{If } k > l, \text{ then } f(z_0) = 0$$

If $k < l$, then z_0 is a pole of order $l-k$:

$$f(z) = \frac{a_k (z - z_0)^k + \dots}{b_l (z - z_0)^l + \dots}$$

$$= \frac{a_k}{b_l (z - z_0)^{l-k}} + \frac{a_{k+1} (z - z_0)}{b_l (z - z_0)^{l+1-k}} + \dots$$

Asymptotic argument: close to z_0 , the higher powers of $z - z_0$ are small, and therefore,

$$f(z) \approx \frac{a_k}{b_l (z - z_0)^{l-k}} \quad \text{when } z \text{ is close to } z_0.$$

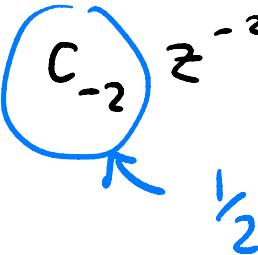
Summary: this classifies the behavior of $f(z) = p(z)/q(z)$ close to $z_0 \in \mathbb{C}$ in terms of the Laurent series of p and q around z_0 .

Example: $f(z) = \frac{\sin(z)}{2z^3 + z^4}$ has a pole of order 2 at $z_0 = 0$

$$f(z) = \frac{z - z^3/3! + z^5/5! - \dots}{2z^3 + z^4}$$
$$= \frac{1 - z^2/3! + z^4/5! - \dots}{2z^2 + z^3}$$

Close to z_0 , we have $f(z) \approx \frac{1}{2} z^{-2}$. We can already conclude

$$f(z) = c_{-2} z^{-2} + c_{-1} z^{-1} + c_0 + \dots$$



III. 4 Residues

Definition: The coefficient c_{-1} in the Laurent series of f at z_0 is called the residue of f at z_0 :

$$\text{Res}_{z_0}(f) := c_{-1} = \frac{1}{2\pi i} \int_{\gamma} f(z) dz$$

where γ is a small circle around z_0 .

Example: If f is holomorphic over the interior of γ , then $c_{-1} = 0$.

$$\text{Example: } \text{Res}_0\left(\frac{1}{z}\right) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z} dz = \frac{2\pi i}{2\pi i} = 1$$

Suppose $f(z)$ has a singularity of order m at z_0 .

$$f(z) = C_{-m}(z - z_0)^{-m} + \dots + C_{-1}(z - z_0)^{-1} + C_0 + C_1(z - z_0) + \dots$$

Then

$$g(z) := (z - z_0)^m f(z)$$

$$= C_{-m} + C_{-m+1}(z - z_0) + \dots + C_{-1}(z - z_0)^{m-1} + \dots$$

*m-1 terms in
the Taylor series*

is the Taylor series of the holomorphic function $g(z)$ around z_0 .

Using the well-known formula for the Taylor series coefficients, we obtain the coefficient C_{-1} ,

$$C_{-1} = \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} g(z_0) = \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \left[(z - z_0)^m f(z) \right]$$

It is often convenient to write this as a limit :

$$\begin{aligned}c_{-1} &= \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} g(z_0) \\&= \frac{1}{(m-1)!} \lim_{z \rightarrow z_0} g^{(m-1)}(z) \\&= \frac{1}{(m-1)!} \lim_{z \rightarrow z_0} \left[(z - z_0)^m f(z) \right]^{(m-1)}\end{aligned}$$

This formula is helpful if we know the order of the pole.

Example Let $f(z) = \frac{1}{\sin(z)}$ and $z_0 = 0$. Then

$$f(z) = \frac{1}{z - \frac{z^3}{3!} + \dots}$$

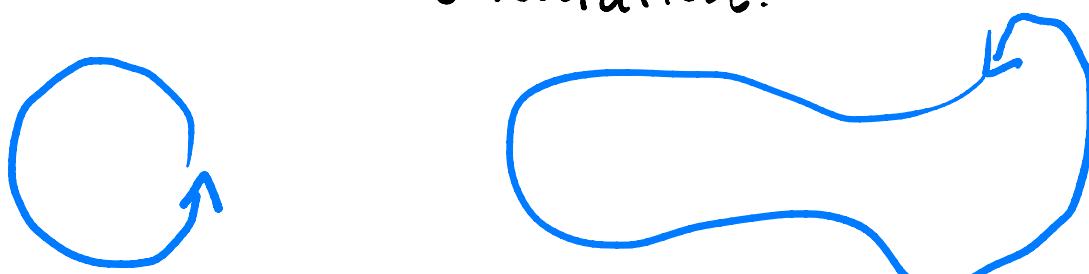
Hence f has a pole of order 1. We compute the residue

$\text{Res}_0(f) = c_{-1}$ in the Laurent series of f at z_0 .

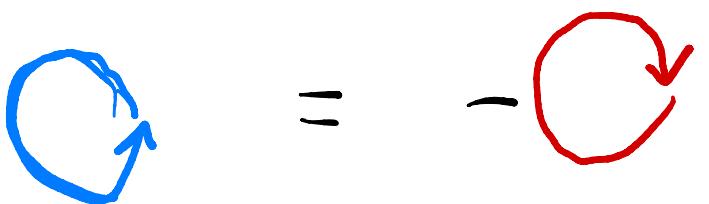
$$= \lim_{z \rightarrow 0} [z f(z)]$$

$$= \lim_{z \rightarrow 0} \frac{1}{1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots} = 1$$

Interlude: throughout this class, we have used and will use closed curves only in counterclockwise orientation.



If we change the orientation, then the sign of the integral changes.



We will only use closed curves in counterclockwise direction, unless mentioned explicitly.

IV

Residue theorem and its applications

IV. 1 Main result

If $f: \mathbb{C} \setminus \{z_0\} \rightarrow \mathbb{C}$ is a holomorphic function, and γ is a closed simple differentiable curve around z_0 , then

$$\text{Res}_{z_0}(f) = \frac{1}{2\pi i} \int_{\gamma} f(z) dz$$

That means, we can express the curve integral as

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \text{Res}_{z_0}(f)$$

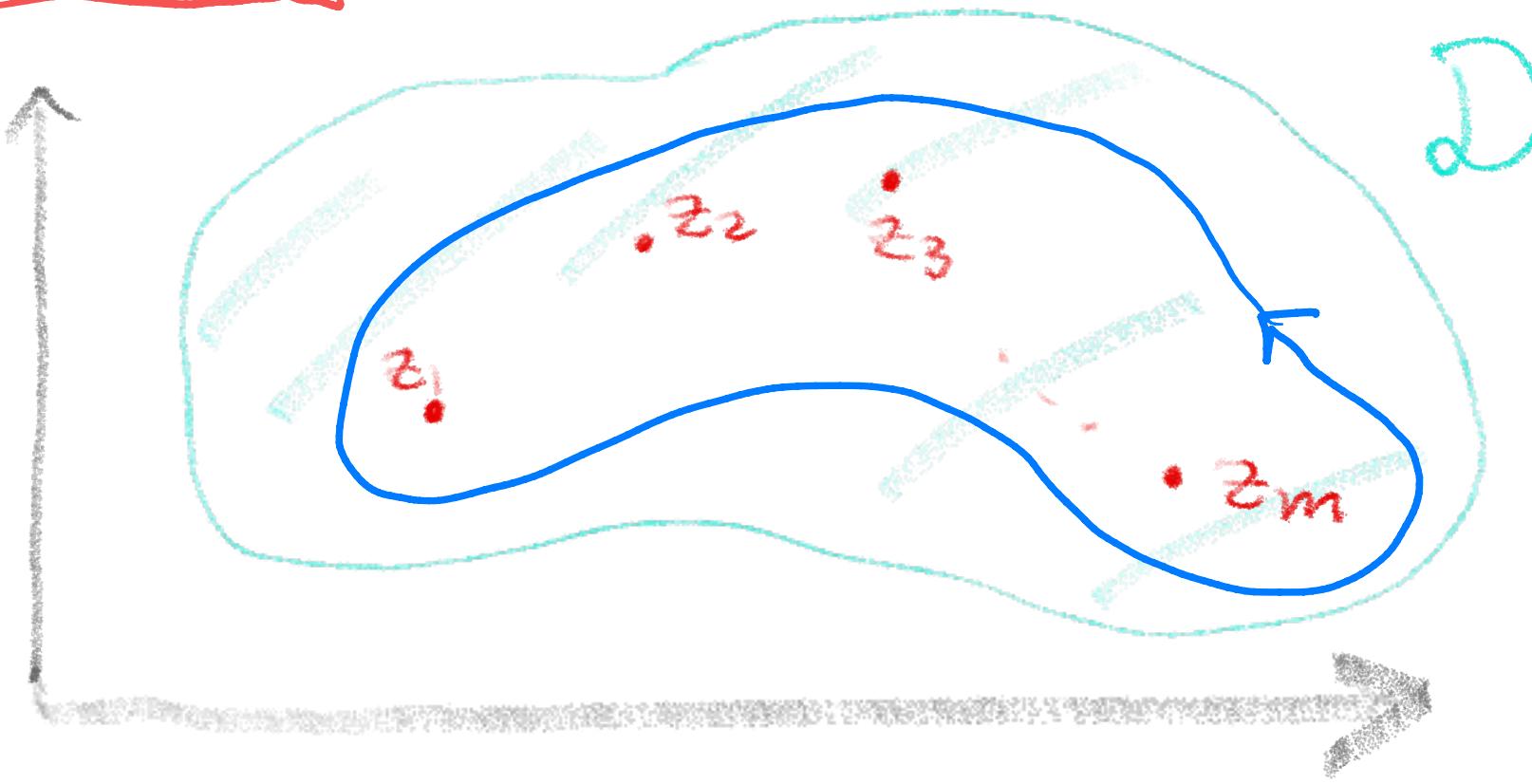
More generally, the residue theorem holds:

Thm: Suppose that $\mathcal{D} \subseteq \mathbb{C}$ is a simply-connected open set and let γ be a closed simple differentiable curve in \mathcal{D} that encircles the points $z_1, z_2, z_3, \dots, z_m \in \text{Int } \gamma$

If $f: \mathcal{D} \setminus \{z_1, z_2, \dots, z_m\} \rightarrow \mathbb{C}$ is holomorphic, then

$$\int_{\gamma} f(z) dz = 2\pi i \left(\text{Res}_{z_1}(f) + \dots + \text{Res}_{z_m}(f) \right)$$

Illustration



Remark: According to the residue theorem, the integral of f along γ is completely determined by the residues of the points within γ .

- If only one point z_1 encircled by γ has a non-zero residue, then
$$\int_{\gamma} f(z) dz = 2\pi i \cdot \text{Res}_{z_1}(f)$$
[This is the definition of the residue]

- If several points with non-zero residue are encircled by γ , say, z_1, z_2, \dots, z_m , then the residues add up

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \sum_{i=1}^m \text{Res}_{z_i}(f)$$

- If the points encircled by γ all have zero residue, then

$$\int_{\gamma} f(z) dz = 0,$$

Notice then that f is holomorphic over $\text{int } \gamma$ and so this is just the Cauchy theorem.

Example 1 Consider $f: \mathbb{C} \setminus \{0\} \rightarrow \mathbb{C}$, $f(z) = \frac{1}{z}$

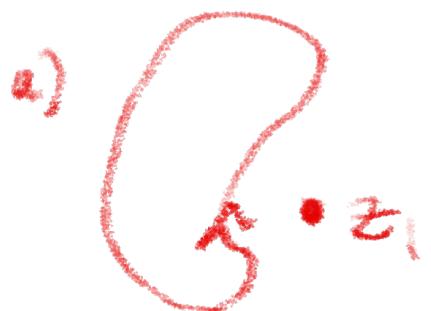
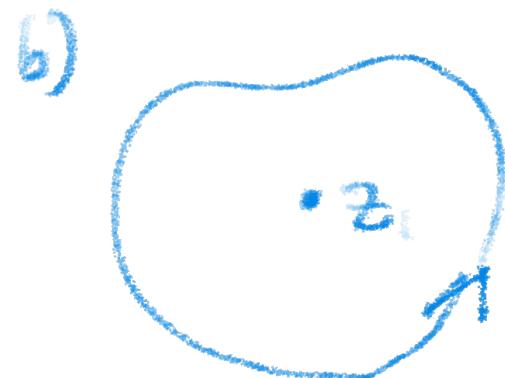
and let γ be a simple closed differentiable curve.

a) If $0 \notin \overline{\text{int } \gamma}$, then $\int_{\gamma} f(z) dz = 0$ [Cauchy theorem / residue theorem]

b) If $0 \in \text{int } \gamma$, then

$$\int_{\gamma} f(z) dz = 2\pi i \cdot \text{Res}_0(f) = 2\pi i \cdot 1 = 2\pi i$$

c) If 0 lies on the curve, then the integral is not defined.



Example 2: Let $f: \mathbb{C} \setminus \{0, -1\} \rightarrow \mathbb{C}$, $f(z) = \frac{1}{z(z+1)}$

At 0 and -1, we have poles of order 1. We compute the residues:

$$\text{Res}_0(f) = \lim_{z \rightarrow 0} z f(z) = \lim_{z \rightarrow 0} \frac{1}{z+1} = 1$$

$$\text{Res}_{-1}(f) = \lim_{z \rightarrow -1} (z+1) f(z) = \lim_{z \rightarrow -1} \frac{1}{z} = -1$$

Having computed the residues, let γ be a closed simple differentiable curve.

Case a) $0, -1 \notin \overline{\text{int } \gamma}$ $\Rightarrow \int_{\gamma} f(z) dz = 0$

Case b) $0 \in \text{int } \gamma$
 $-1 \notin \overline{\text{int } \gamma}$ $\Rightarrow \int_{\gamma} f(z) dz = 2\pi i \cdot \text{Res}_0(f) = 2\pi i$

Case c) $0 \notin \overline{\text{int } \gamma}$ $\Rightarrow \oint_{\gamma} f(z) dz = 2\pi i \text{Res}_{-1}(f) = -2\pi i$

$-1 \in \text{int } \gamma$

Case d) $0, -1 \in \text{int } \gamma$

$$\begin{aligned} \Rightarrow \oint_{\gamma} f(z) dz &= 2\pi i \left(\text{Res}_0(f) + \text{Res}_{-1}(f) \right) \\ &= 2\pi i (1 + (-1)) = 0 \end{aligned}$$

Case e) if at least one of the singularities lies on the curve, then the integral is not defined.

