

27.02.2025

I.3. Limits

I.4. Complex derivatives

I.5. Complex logarithm

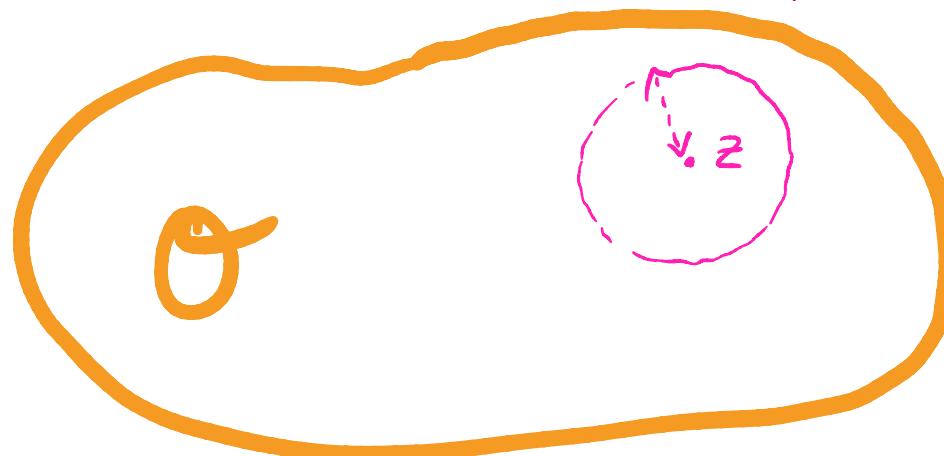
Brief review : open sets

What is an open set?

We call $\Omega \subseteq \mathbb{C}$ open if $\forall z \in \Omega \ \exists \varepsilon > 0$ such that

$$\{ w \in \mathbb{C} \mid |w - z| < \varepsilon \} \subseteq \Omega$$

In other words, we can always find, for any $z \in \Omega$, a small ball around z that lies completely in Ω



Example : \mathbb{C} is open

I. 3 Limits Let $\Omega \subseteq \mathbb{C}$ be open.

A function $f: \Omega \rightarrow \mathbb{C}$ is continuous at $z_0 \in \Omega$ if

$$\forall \varepsilon > 0 \quad \exists \delta > 0 : |z - z_0| < \delta \Rightarrow |f(z) - f(z_0)| < \varepsilon$$

In that case, we write

$$f(z_0) = \lim_{z \rightarrow z_0} f(z)$$

We call $f: \Omega \rightarrow \mathbb{C}$ continuous if it is continuous at all $z_0 \in \Omega$.

One easily sees that $f = u + iv$ is continuous (at z_0) if and only if $u = \operatorname{Re} f$ and $v = \operatorname{Im} f$ are continuous (at z_0).

Note: if $f, g: \Omega \rightarrow \mathbb{C}$ are continuous, then so are

$$f + g, \quad f \cdot g$$

I. 4. Complex derivatives

We call $f: \Omega \rightarrow \mathbb{C}$ complex differentiable / holomorphic at $z_0 \in \Omega$

if $f'(z_0) = \lim_{z \rightarrow z_0} \frac{f(z) - f(z_0)}{z - z_0}$ exists and is finite

We call f holomorphic / complex differentiable

if it is differentiable at every $z_0 \in \Omega$.

[If $f: \Omega \rightarrow \mathbb{C}$ is holomorphic and $\Omega = \mathbb{C}$, then f is also called entire]

The definition seems analogous to differentiability of functions $f: \mathbb{R} \rightarrow \mathbb{R}$, but in the complex setting differentiability is much stronger.

We call $f: \mathbb{C} \rightarrow \mathbb{C}$ complex differentiable at $z_0 \in \mathbb{C}$
if the limit

$$f'(z_0) = \lim_{z \rightarrow z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists and is finite

This definition is completely analogous to the definition of
derivatives in Analysis I & II.

However, such functions are much stronger, satisfying the
 \Rightarrow Cauchy-Riemann Equations

Cauchy-Riemann Equations

Let $\Omega \subseteq \mathbb{C}$ be an open set and let

$$f: \Omega \rightarrow \mathbb{C}, \quad z = x + iy \mapsto u(x, y) + v(x, y) \cdot i$$

be holomorphic over Ω . Then

$$u, v \in C^1(\Omega), \quad \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \quad \left. \begin{array}{l} \\ \end{array} \right\} \oplus$$

Conversely, if \oplus holds, then f is holomorphic over Ω .

Whenever $f: \Omega \rightarrow \mathbb{C}$ is holomorphic, we have at each $z_0 \in \Omega$:

$$\begin{aligned} f'(z_0) &:= \lim_{z \rightarrow z_0} \frac{f(z) - f(z_0)}{z - z_0} = \frac{\partial u}{\partial x}(x, y) + \frac{\partial v}{\partial x}(x, y) \cdot i \\ &= \frac{\partial v}{\partial y}(x, y) + \frac{\partial v}{\partial y}(x, y) \cdot i \end{aligned}$$

This already determines the real and imaginary part of f

Brief rationale of Cauchy-Riemann equations. Let $z_0 = x_0 + iy_0$

$$\begin{aligned}
 f'(z_0) &= \lim_{x \rightarrow x_0} \frac{f(x + iy_0) - f(x_0 + iy_0)}{x - x_0} \\
 &= \lim_{x \rightarrow x_0} \frac{u(x, y_0) - u(x_0, y_0)}{x - x_0} + \frac{v(x, y_0) - v(x_0, y_0)}{x - x_0} i \\
 &= \underline{\partial_x u(x_0, y_0)} + \underline{\partial_x v(x_0, y_0)} i
 \end{aligned}$$

$$\begin{aligned}
 f'(z_0) &= \lim_{y \rightarrow y_0} \frac{f(x_0 + iy) - f(x_0 + iy_0)}{iy - iy_0} \\
 &= \lim_{x \rightarrow x_0} \frac{u(x_0, y) - u(x_0, y_0)}{iy - iy_0} + \frac{v(x_0, y) - v(x_0, y_0)}{iy - iy_0} i \\
 &= \underline{\partial_y v(x_0, y_0)} - \underline{\partial_y u(x_0, y_0)} i
 \end{aligned}$$

Ex 1

$$f(z) = z^2 = \underbrace{x^2 - y^2}_{u(x,y)} + \underbrace{2xy \cdot i}_{v(x,y)}$$

We check the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = 2x \quad \frac{\partial v}{\partial x} = 2y$$

$$\frac{\partial u}{\partial y} = -2y \quad \frac{\partial v}{\partial y} = 2x$$

$$\boxed{\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}}$$

Hence $f(z) = z^2$ is holomorphic, and

$$f'(z) = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} i = 2x + 2y \cdot i = 2z$$

Ex 2

$$f(z) = \bar{z} = x - iy$$

$$\frac{\partial u}{\partial x} = 1 \quad \frac{\partial v}{\partial x} = 0$$

$$\frac{\partial u}{\partial y} = 0 \quad \frac{\partial v}{\partial y} = -1$$

$$\partial_x u \neq \partial_y v$$

The Cauchy-Riemann Equations are not satisfied,
hence the complex conjugate is not complex differentiable.

Ex 3

$$f : \mathbb{C} \setminus \{0\} \rightarrow \mathbb{C}, \quad z \mapsto \frac{1}{z}$$

We have seen

$$f(z) = \frac{x}{x^2 + y^2} + \frac{-y}{x^2 + y^2} i \quad x + iy \neq 0$$

We verify C.R. - Eq.

$$\frac{\partial u}{\partial x} = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2}$$

$$\frac{\partial v}{\partial x} = \frac{2xy}{(x^2 + y^2)^2} = -\frac{\partial u}{\partial y}$$

$$\frac{\partial u}{\partial y} = \frac{-2xy}{(x^2 + y^2)^2}$$

$$\frac{\partial v}{\partial y} = \frac{-x^2 - y^2 + 2y^2}{(x^2 + y^2)^2} = \frac{\partial v}{\partial x}$$

Therefore

$$f'(z) = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} i = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} + \frac{2xy}{(x^2 + y^2)^2} i$$

We suspect that this should equal $-\frac{1}{z^2}$.

$$\frac{1}{z^2} = \frac{1}{(x + yi)^2} = \frac{1}{x^2 - y^2 + 2xy \cdot i}$$

$$= \frac{x^2 - y^2 - 2xy \cdot i}{(x^2 - y^2)^2 + 4x^2 y^2} = \frac{x^2 - y^2 - 2xyi}{x^4 + y^4 + 2x^2 y^2}$$

$$f'(z) = \frac{-1}{z^2} = \frac{x^2 - y^2 - 2xyi}{(x^2 + y^2)^2}$$

Ex 4

$$f(z) = e^z = e^x \cos(y) + e^x \sin(y) i$$

$$\frac{\partial u}{\partial x} = e^x \cos(y) \quad \frac{\partial u}{\partial y} = -e^x \sin(y) = -\frac{\partial v}{\partial x}$$

$$\frac{\partial v}{\partial x} = e^x \sin(y) \quad \frac{\partial v}{\partial y} = e^x \cos(y) = \frac{\partial u}{\partial x}$$

Cauchy-Riemann equations satisfied, hence f holomorphic, and

$$f'(z) = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} i = e^x \cos(y) + e^x \sin(y) i = e^z$$

Remark (complex conjugate)

We can directly check that $f(z) = \bar{z}$ is not holomorphic

Suppose that $z_0 = x_0 + y_0i$ and f is diff'able at z_0 .

i.e., $f'(z_0) = \lim_{z \rightarrow z_0} \frac{\bar{z} - \bar{z}_0}{z - z_0}$ exists and is finite

a) Let $z = x + iy$ approximates z_0

$$f'(z_0) = \lim_{x \rightarrow x_0} \frac{x - x_0}{x - x_0} = 1$$

b) Let $z = x_0 + iy$ approximate z_0

$$f'(z_0) = \lim_{y \rightarrow y_0} \frac{-yi + y_0i}{yi - y_0i} = -1$$

Rules of differentiation for complex derivatives

If $\Omega \subseteq \mathbb{C}$ is open and $f, g: \Omega \rightarrow \mathbb{C}$ holomorphic, then

$$(f + g)' = f' + g'$$

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

$$(f/g)' = \frac{f'g - fg'}{g^2} \quad \text{where } g \neq 0$$

Lastly, if $g(\Omega) \subseteq \Omega$, then we can compose f and g ,

$$(f \circ g)'(z) = f'(g(z)) \cdot g'(z)$$

Remark

We can check this the same manner as for real derivatives. For example

$$\lim_{z \rightarrow z_0} \frac{f(z)g(z) - f(z_0)g(z_0)}{z - z_0}$$

$$= \lim_{z \rightarrow z_0} \frac{f(z)g(z) - f(z_0)g(z) + f(z_0)g(z) - f(z_0)g(z_0)}{z - z_0}$$

$$= \lim_{z \rightarrow z_0} \frac{f(z) - f(z_0)}{z - z_0} g(z_0) + \lim_{z \rightarrow z_0} f(z_0) \frac{g(z) - g(z_0)}{z - z_0}$$

$$= f'(z_0) \cdot g(z_0) + f(z_0) g'(z_0)$$

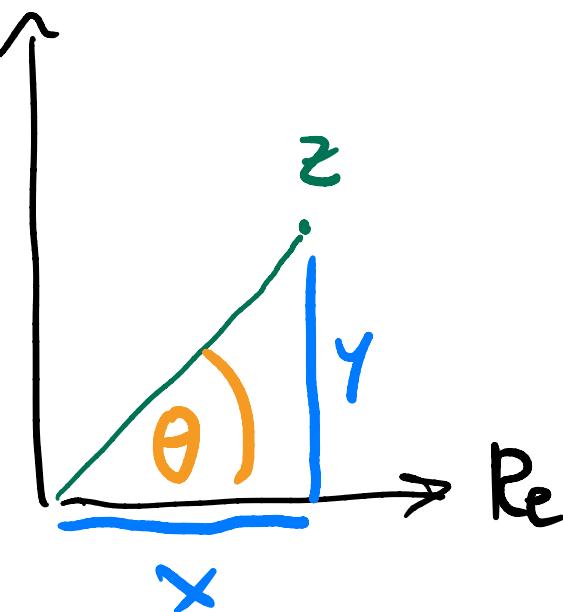
I. 5

Complex logarithm

We recall the principal argument of a complex number

$$-\pi < \theta \leq \pi$$

Im



How to compute the principal argument?

$$\theta = \begin{cases} \arctan(y/x) & x > 0 \\ \pi/2 & x = 0, y > 0 \\ \pi + \arctan(y/x) & x < 0, y \geq 0 \\ -\pi/2 & x = 0, y < 0 \\ -\pi + \arctan(y/x) & x < 0, y < 0 \end{cases}$$

To motivate the complex logarithm, suppose

$$z = e^{x+iy} = e^x \cdot e^{iy} = |z| \cdot e^{i \arg(z)}$$

Given z , the complex logarithm should provide $x+iy$

In addition, we want y to be the principle argument

$$-\pi < y \leq \pi$$

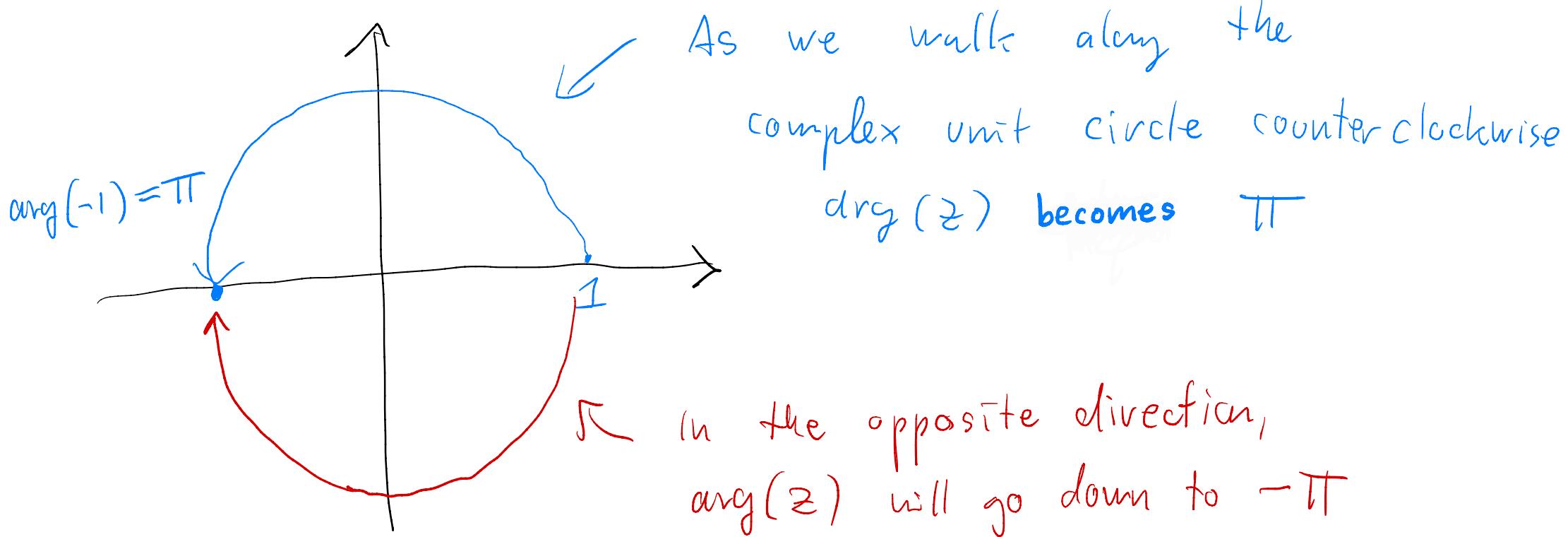
Hence, we define

$$\begin{aligned}\log z &= x + iy \\ &= \underbrace{\log |z|}_{\log(e^x)} + \arg z \cdot i\end{aligned}$$

From the definition, it already follows that the complex logarithm is not defined at zero, $z = 0$.

The complex logarithm is not continuous

because $\arg(z)$ is not continuous

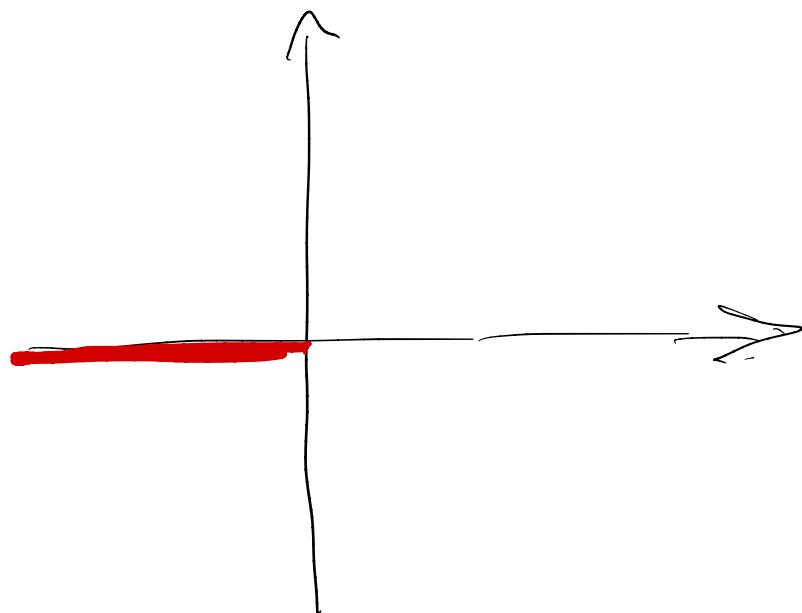


Hence, along the negative numbers, the complex logarithm is not continuous. It jumps along the negative numbers.

However, $\log(z)$ is continuous over

$$\mathbb{C} \setminus \left\{ z \in \mathbb{C} \mid \begin{array}{l} \text{Im}(z) = 0, \\ \text{Re}(z) \leq 0 \end{array} \right\}$$

What are the real and imaginary components of $f(z) = \log(z)$?



Let us write $f(z) = u(x, y) + v(x, y) \cdot i$. For simplicity, consider $x > 0$. Then

$$\log(z) = \log|z| + \arg(z) \cdot i$$

Writing $z = x + iy$, we find

$$\log(z) = \underbrace{\log \sqrt{x^2 + y^2}}_{u(x, y)} + \underbrace{\arctan(y/x) \cdot i}_{v(x, y)}$$

NB: For positive real numbers $z_1, z_2 \in \mathbb{R}$

$$\log(z_1 z_2) = \log(z_1) + \log(z_2) \quad \text{(*)}$$

But for general $z_1, z_2 \in \mathbb{C}$, this no longer holds. For example,

$$z_1 = z_2 = -1 \Rightarrow \arg z_1 = \arg z_2 = \pi$$

We have

$$\log(z_1 z_2) = \log(1) = 0 \neq \log(z_1) + \log(z_2) = 2\pi \cdot i$$

Hence (*) no longer holds for the complex logarithm

With the logarithm, we can define the power function with complex exponent.

Let $\gamma \in \mathbb{C}$.

$$\begin{aligned} f(z) := z^\gamma &:= e^{\log(z^\gamma)} := e^{\gamma \cdot \log(z)} \\ &= e^{\gamma \log|z| + \gamma \arg(z) \cdot i} \end{aligned}$$

The power function with exponent γ is holomorphic over

$$\mathbb{C} \setminus \{z \in \mathbb{C} \mid \operatorname{Im}(z) = 0, \operatorname{Re}(z) \leq 0\}$$