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We find the differential equation for bult) from the

original partial differential equation ::

Gu = Gen + F

We study the derivatives of u as Forrier series

Gulxit) = 2 b)si

(xu(x , +) = [bu(t)cos( **)

G(x ,
+) = 20 busin

We write the heat equation in terms of Forrier since series ·



& bilt sin()busin
We have two Forrier sine series on both sides

,
the corresponding

coefficients must be the same for each n :

bi(t) = - bu(H) . I + Bu(t) = Differential
Equation
for bult

Using the initial data :

& bu(o) sin()=i
Hence

↓ initial value
by(0) = by

at t = 0



We have decoupled the problem into independent Candy problems,
one for each frequency.

bilt) = - (h) by(t) + Pu(t) , by(o) = bi

These first-orde initial value problems are solved by :

bult) = bie
- Et

+ 95Bs) e-E)"(t-s) da

[see discussion of first-order initial value problems)

3. Having found the Forrier coefficients
,

we assemble the

solution of the heat equation :



0xL
u(x , t) = [bu(t)(in(ix) t = 0

= [bi +-d) sin( +)

- This solves theIntentequation+C + initialvalues
-

- This exemplifies a
Il

separation of variables" :

we write the solution as a som of products

u(x , +) = & busin↑ depends only
dependsanas on 7

- We have decomposed the heat equation into simpler subproblems,

one for each frequency .



- Comparison with Poisson problem :

o decompose solution/duful equation into Forrier series

· Poisson problem : find coefficients by linear equation
· Heat problem :

"" by solving ordinary diffey

Similarly, one can solve :

Wave equation : Gen = Gu + F

Biharmonic diffusion : Ser = Exe + f

Schrodinger Equation : iSte = Gel



#
.
3
.
AEquationover IRusing

Torriertransformations

Having addressed the heat equation over intervals, how do we

address the heat equation over IP ?

Let f : 1 -> IR be a source term ,
and let 40 be a

material coefficient. We want to solve

Cu(it) = kGxU(x ,t) + f(x ,
+) -0x

to

with initial conditions at time +=

u(x
,
0) = Mo(x) - N(X < d

Here
, no boundary data because there is no bounday

.
However

,
the solution

that we find will satisfy a decy condition towards IN .



Apply the Forrier transform (FT) in X :

3 + u(x , t) = (2 (ix) uk , t) + F(x , t)

↑ ↑ ↑

FT in X
, can be FT in X, FT in X

switched with Gt turns 2xx into (a)
*

Initial values after Forrier transform :

u(x
. 0) = Yo(d)

Heat equation over IP from "frequency perspective"
NB : No x derivatives

, only time derivatives

For each frequency &- ID
,
we have an independent cradhy problem.



For end &t IP
,

we solve

( + u(x,+ ) = - k=x u(x , t) + f(x ,+) , + >0

u(x .
0) = mo(x)

For each fixed & M
,

we solve the Cauchy problem

u(x ,
+) = Yok) e

- Eat
+ 9

+

( , s)e
42(t- 3)ds

(see discussion of first-order initial value problems (

Having found a formula for kit) for all &EIR and + = 0,

we apply the inverse FT in a to get back to u(x , +)
·



u(x , +) = E
+

[u(d ,+)]
-k (t - xds]=F...

j ↑
E(4o] El ?) F(f] = (2)

We notice that we can smitch FT"ind with time integral

E
+ g ... = SE ....

We know (FT table) or compute explicitly

e
- wa x ratwie/w



We use that to see :

FT - k2t- e
w = Tht

Recall the convolution formula

E(f) · F(g]= F(f * g]

With that
, we compute

T-u(x , t) =Ho() ds
-

-



Remarks : · The "heat Kernel" is the function
-

(x , +)=
The heat Kernel appears in the solution theory of many PDE.

· The solution formula for the
H
.

E
. might be tedious to use

explicitly but can be evaluated approximately using Americal

Integration on a computer.



#.

4.rodingerEquation
We study the Schrodinger equation over an interval (0 . 27

with a linear potential term :

i Gtu(x , t) = GE u(x ,+) - au(x ,t) + f(x , t) .

T
potential term
220

We impose Dirichlet boundary conditions,

u(0 . +) = 0 .
m(h , t) = 0, >o ,

and initial values at t = 0 :

u(x , 0) = uo(x), o XL


