

06.03.2025

- Recap
- II. Complex integration

II.1 Definitions

II.2 Cauchy theorem

Recap

: Complex derivative

$$f'(z_0) = \lim_{z \rightarrow z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

$$= \partial_x u(x, y) + \partial_x v(x, y) \cdot i$$

Complex derivative exists if and only if

Cauchy-Riemann equations hold

$$\partial_x u = \partial_y v, \quad \partial_y u = -\partial_x v$$

Functions with complex derivatives:

- polynomials: $z^3 + z^2$
- negative powers: z^{-1}, z^{-2}
- rational functions
- exponential function e^z
- logarithm $\log(z) = \log|z| + \arg(z) \cdot i$

} except at poles

NB: The imaginary component of the logarithm is an arbitrary choice, we choose the principal argument of z .

This corresponds to the fact that $\exp(z) = \exp(z + 2\pi i \cdot k)$

We also say that we pick a "branch" of the complex logarithm.

- power functions: $z^\gamma := e^{\gamma \cdot \log(z)}$

With the logarithm, we define the power function with some complex exponent $\gamma \in \mathbb{C}$

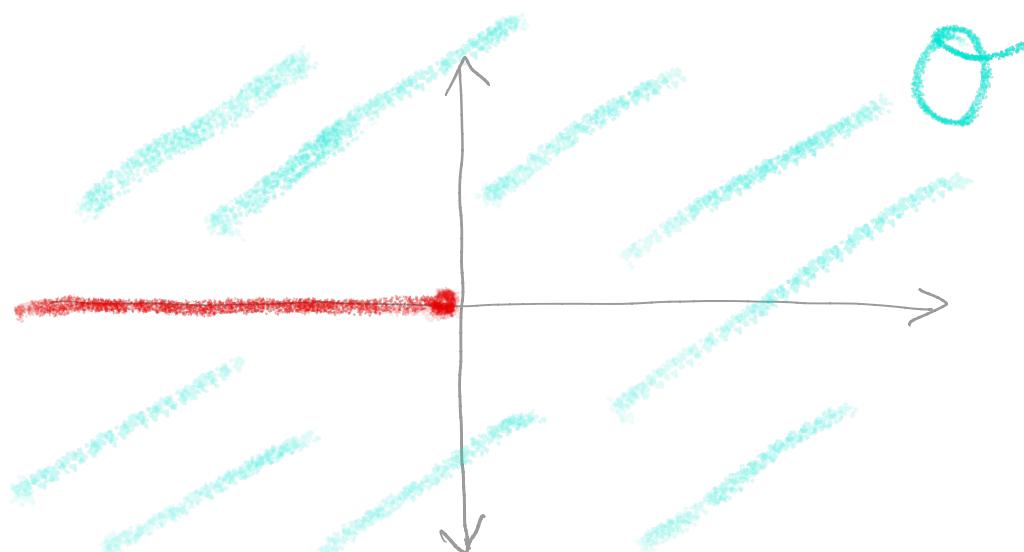
$$f(z) = z^\gamma = e^{\gamma \cdot \log(z)}$$

$$[z^\gamma = e^{\log(z^\gamma)} = e^{\gamma \cdot \log(z)}]$$

$$= e^{\gamma \log|z| + \gamma \arg(z) \cdot i}$$

This function is holomorphic over the same domain as the complex logarithm

$$\Omega = \mathbb{C} \setminus \{z \in \mathbb{C} \mid \operatorname{Im}(z) = 0, \operatorname{Re}(z) \leq 0\}$$



II Complex integration

We recall from vector analysis: let

$$\vec{F}: \mathbb{R}^2 \rightarrow \mathbb{R}^2, \quad \vec{F}(x_1, x_2) = (\vec{F}_1(x_1, x_2), \vec{F}_2(x_1, x_2))$$

Given a curve $\gamma: [a, b] \rightarrow \mathbb{R}^2$, we have

$$\begin{aligned} \int_{\gamma} \vec{F} \, dl &:= \int_a^b \vec{F}(\gamma(t)) \cdot \gamma'(t) \, dt \\ &= \int_a^b F_1(\gamma(t)) \cdot \gamma_1'(t) + F_2(\gamma(t)) \cdot \gamma_2'(t) \, dt \end{aligned}$$

product scalaire

With that in mind, we define the integral of a function $f: \mathbb{C} \rightarrow \mathbb{C}$ along a curve in \mathbb{C} .

II.1. Definition

Let $[a, b] \subseteq \mathbb{R}$ be a closed interval, $a \leq b$, and suppose we have a differentiable curve $\gamma: [a, b] \rightarrow \mathbb{C}$.

Let Γ be the image of the curve γ .

If $f: \Gamma \rightarrow \mathbb{C}$ is a continuous function, then

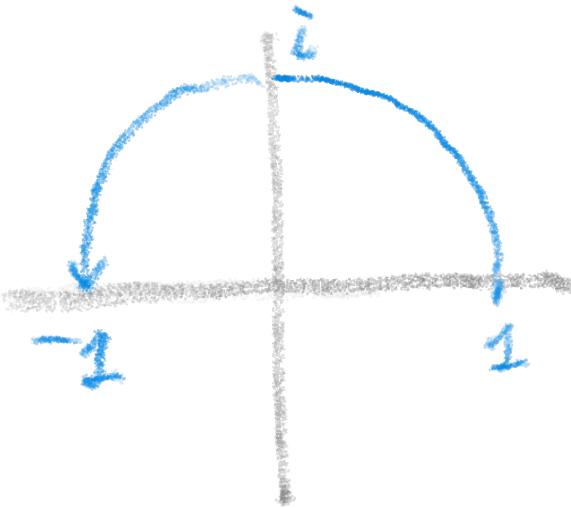
$$\int_{\Gamma} f(z) dz := \int_{\gamma} f(z) dz := \int_a^b f(\gamma(t)) \cdot \gamma'(t) dt$$

↑ complex multiplication

defines the integral of f along the curve Γ .

NB: Since γ is differentiable, it has derivative $\gamma': (a, b) \rightarrow \mathbb{C}$

Example 1 Let Γ be the upper half-circle around 0 with radius 1



$$\gamma: [0, \pi] \rightarrow \mathbb{C}, \quad \gamma(t) = e^{it}$$
$$\gamma'(t) = i \cdot e^{it}$$

we integrate $f(z) = z^2$

$$\int_{\Gamma} z^2 dz = \int_0^{\pi} (e^{it})^2 \cdot ie^{it} dt = i \int_0^{\pi} e^{3it} dt$$

$$\textcircled{X} = i \left[\frac{e^{3it}}{3i} \right]_{t=0}^{t=\pi} = \frac{1}{3} \left[e^{3it} \right]_{t=0}^{t=\pi}$$

$$= \frac{1}{3} [(-1) - (1)] = -\frac{2}{3}$$

* Here, we use the fundamental theorem of calculus for the function
 $(a, b) \rightarrow \mathbb{C}, \quad t \rightarrow e^{3it}$

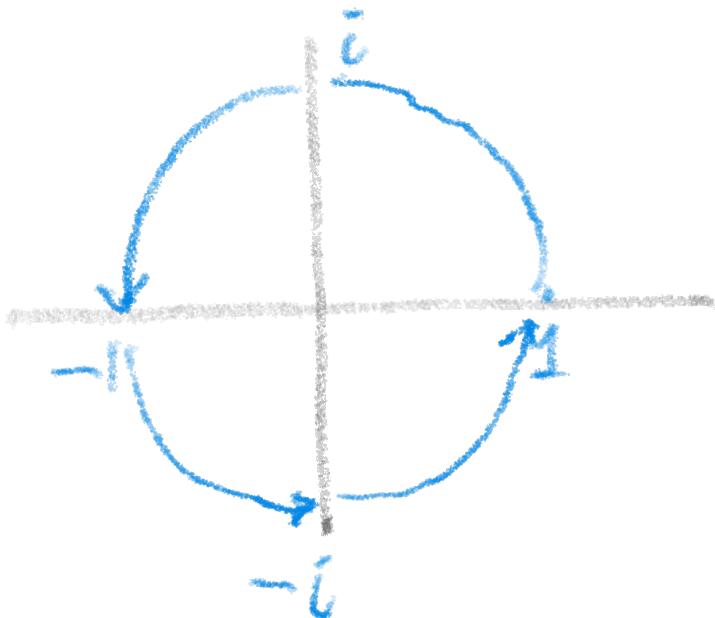
Example 2

Let Γ be the unit circle.

$$\gamma: [0, 2\pi] \rightarrow \mathbb{C}, \quad \gamma(t) = e^{it}$$

Again, we integrate $f(z) = z^2$:

$$\int_{\Gamma} z^2 dz = \int_0^{2\pi} (e^{it})^2 ie^{it} dt = \dots = \frac{1}{3} [e^{it}]_{t=0}^{t=2\pi} = 0$$



Q: Is the curve integral of a function $f: \mathbb{C} \rightarrow \mathbb{C}$ along a closed differentiable curve always zero?

A: No!

Example 3 Some Γ and γ but $f(z) = \frac{1}{z}$

$$\int_{\Gamma} \frac{1}{z} dz = \int_0^{2\pi} \frac{1}{e^{it}} \cdot ie^{it} dt = \int_0^{2\pi} i dz = 2\pi \cdot i$$

Example 4 Some Γ and γ but $f(z) = \frac{1}{z^2}$

$$\begin{aligned} \int_{\Gamma} \frac{1}{z^2} dz &= \int_0^{2\pi} \frac{ie^{it}}{(e^{it})^2} dt = i \int_0^{2\pi} e^{-it} dt \\ &= i \left[\frac{e^{-it}}{-i} \right]_{t=0}^{t=2\pi} = 0 \end{aligned}$$

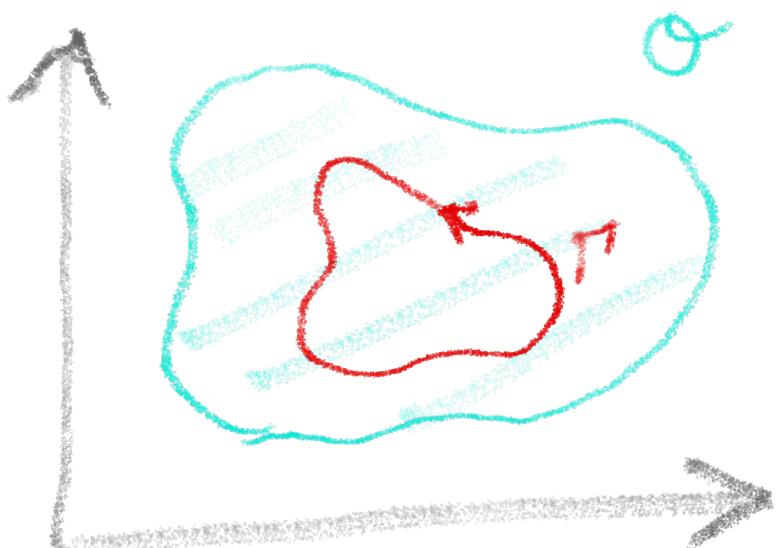
Remark: This definition of curve integral extends to curves that are piecewise differentiable (e.g. squares, combinations of lines and semicircles)

II. 2 Cauchy theorem

Let $\Omega \subseteq \mathbb{C}$ be an open simply-connected set and let $\gamma \subseteq \Omega$ be a closed (piecewise) differentiable curve.

Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic over Ω . Then

$$\int_{\gamma} f(z) dz = 0$$



- 1) For practical computations, we are given f and γ , and we pick a suitable Ω to verify the conditions of the theorem
- 2) Often, $\Omega = \mathbb{C}$ or $\Omega = \text{unit disk}$
- 3) "simply-connected" means in practice that Ω has only one part and **no holes**

Example 1

Let Γ be the unit circle and $f(z) = z^2$.

We apply the Cauchy theorem with $\Omega = \mathbb{C}$ and get

$$\int_{\Gamma} z^2 dz = 0$$

Example 2 : Let Γ be the unit circle and $f(z) = \frac{1}{z}$

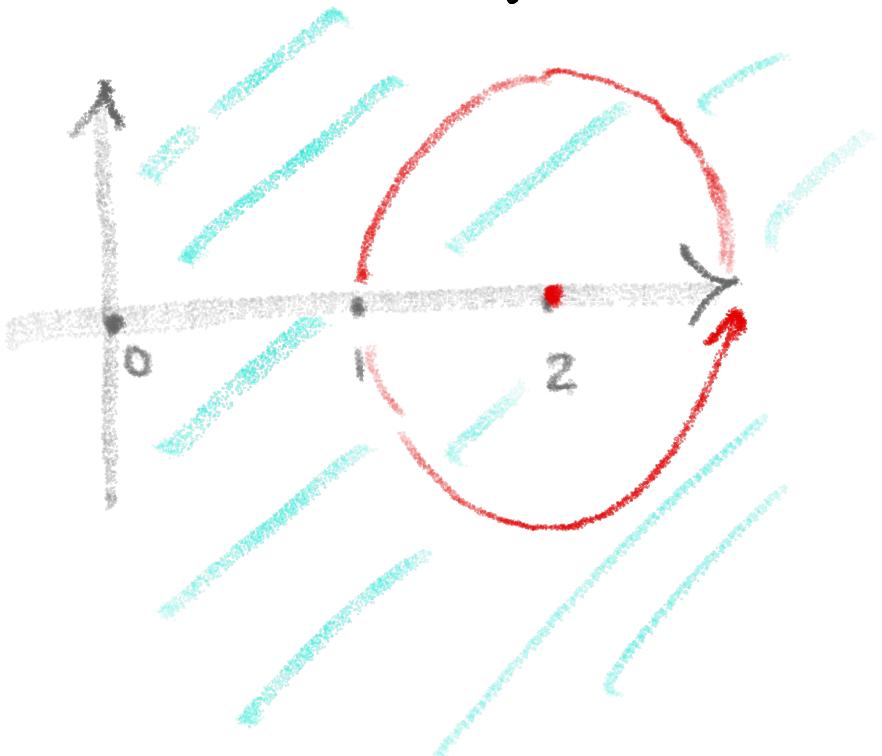
Here, $f : \mathbb{C} \setminus \{0\} \rightarrow \mathbb{C}$ is not defined at zero.

$$\int_{\Gamma} \frac{1}{z} dz = 2\pi \cdot i \neq 0$$

Indeed, we cannot apply the Cauchy theorem! We cannot find a suitable Ω . Any open set $\Omega \subseteq \mathbb{C}$ over which f is holomorphic and that contains the unit circle must leave $z_0 = 0$. Hence Ω must have a hole and can't be simply-connected.

Example 3

Let $f: \mathbb{C} \setminus \{0\} \rightarrow \mathbb{C}$, $f(z) = \sqrt{z}$ and
 $\gamma: [0, 2\pi) \rightarrow \mathbb{C}$, $\gamma(t) = 2 + e^{it}$



We can apply the Cauchy theorem

$$\int_{\gamma} f(z) dz = 0$$

Possible choice:

$$\Omega := \{z \in \mathbb{C} \mid \operatorname{Re} z > 0\}$$

Alternative choices

$$\Omega := \{z \in \mathbb{C} \mid |z - 2| < 1.1\}$$

We verify this result explicitly:

$$\begin{aligned}
 \int_{\gamma} \frac{1}{z} dz &= \int_0^{2\pi} \frac{1}{2 + e^{it}} i e^{it} dt = \int_0^{2\pi} \frac{i e^{it}}{2 + e^{it}} dt \\
 &= \int_0^{2\pi} \log(2 + e^{it})' dt \\
 &= \left[\log(2 + e^{it}) \right]_{t=0}^{t=2\pi} = (\log 3 - \log 3) = 0
 \end{aligned}$$

NB: This works as expected because the curve avoids the jump of the logarithm along the negative numbers

Proof of the Cauchy theorem (outline) : Let $\gamma(t) = \alpha(t) + \beta(t)i$. Then

$$\begin{aligned}
 \int_{\gamma} f(z) dz &= \int_a^b (u(\gamma(t)) + v(\gamma(t))i) \cdot (\alpha'(t) + \beta'(t)i) dt \\
 &= \int_a^b u(\gamma(t)) \alpha'(t) - v(\gamma(t)) \beta'(t) dt + \int_a^b v(\gamma(t)) \alpha'(t) + u(\gamma(t)) \beta'(t) dt \cdot i \\
 &= \int_a^b \begin{pmatrix} u(\gamma(t)) \\ -v(\gamma(t)) \end{pmatrix} \cdot \begin{pmatrix} \alpha'(t) \\ \beta'(t) \end{pmatrix} dt + \int_a^b \begin{pmatrix} v(\gamma(t)) \\ u(\gamma(t)) \end{pmatrix} \cdot \begin{pmatrix} \alpha'(t) \\ \beta'(t) \end{pmatrix} dt \cdot i \\
 &\quad \text{F}(\gamma(t)) \quad \gamma'(t) \quad \text{G}(\gamma(t)) \quad \gamma'(t)
 \end{aligned}$$

$$= \int_{\Gamma} \vec{F} dl + \int_{\Gamma} \vec{G} dl \cdot i \quad \text{Here, we interpret } \mathbb{C} \text{ as the plane } \mathbb{R}^2$$

$$= \iint_{\text{int } \Gamma} \text{curl } \vec{F} + \iint_{\text{int } \Gamma} \text{curl } \vec{G} = 0$$

$$-\partial_x v - \partial_y u = 0 \quad \partial_x u - \partial_y v = 0 \quad \Leftarrow \text{Cauchy-Riemann Equations}$$

II. 3

An extension of the
Cauchy theorem

