

Example 3 Consider $f: \mathbb{C} \setminus \{0, 1\} \rightarrow \mathbb{C}$ with

$$\begin{aligned}f(z) &= \frac{2}{z} + \frac{3}{z-1} + \frac{1}{z^2} \\&= \frac{3}{z-1} + \frac{1+2z}{z^2}\end{aligned}$$

f has pole of order 1 at $z_0 = 1$, and another pole of order 2 at $z_0 = 0$

$$\begin{aligned}\text{Res}_1(f) &= \lim_{z \rightarrow 1} (z-1)f(z) \\&= \lim_{z \rightarrow 1} \left(3 + (z-1) \frac{1+2z}{z^2} \right) \\&= 3 + 0 \cdot \frac{1+2 \cdot 1}{1} = 3\end{aligned}$$

$$\text{Res}_0(f) = \lim_{z \rightarrow 0} \frac{d}{dz} \left[(z - 0)^2 f(z) \right]$$

$$= \lim_{z \rightarrow 0} \frac{d}{dz} \left[\frac{3z^2}{z-1} + 1 + 2z \right]$$

$$= \lim_{z \rightarrow 0} \left[\frac{6z(z-1) - 3z^2}{(z-1)^2} + 2 \right] = 0 + 2 = 2$$

That provides the residues at the poles.

Any integral $\int_{\gamma} f(z) dz$ along some closed (piecewise) differentiable curve can be computed with the residue theorem.

Let us suppose γ is a single piecewise differentiable curve.
We make a case distinction:

Case a) $0, 1 \notin \overline{\text{int } \gamma}$ $\Rightarrow \int_{\gamma} f(z) dz = 0$

Residue thm
Cauchy thm

Case b) $0 \in \text{int } \gamma$
 $1 \notin \overline{\text{int } \gamma}$ $\Rightarrow \int_{\gamma} f(z) dz = 2\pi i \cdot \text{Res}_0(f)$
 $= 2\pi i \cdot 2 = 4\pi i$

Case c) $0 \notin \overline{\text{int } \gamma}$
 $1 \in \text{int } \gamma$ $\Rightarrow \int_{\gamma} f(z) dz = 2\pi i \cdot \text{Res}_1(f)$
 $= 2\pi i \cdot 3 = 6\pi i$

Case d) $0, 1 \in \text{int } \gamma$ $\Rightarrow \int_{\gamma} f(z) dz = 2\pi i (\text{Res}_0(f) + \text{Res}_1(f))$
 $= 10\pi i$

Case e) If $0 \in \gamma$ or $1 \in \gamma$, then the integral is not defined.

Example 4 The function

$$f(z) = \exp\left(\frac{1}{z}\right) = 1 + 1z^{-1} + \frac{z^{-2}}{2} + \frac{z^{-3}}{3!} + \frac{z^{-4}}{4!} + \dots$$

has an essential singularity at $z_0 = 0$. The residue there is

$$\text{Res}_0(f) = 1 = c_{-1}$$

as seen from the Laurent series.

Example 5 The function

$$f(z) = \exp\left(\frac{1}{z^2}\right) = 1 + \frac{z^{-2}}{1!} + \frac{z^{-4}}{2!} + \frac{z^{-6}}{3!} + \dots$$

has an essential singularity at $z_0 = 0$, whose residue equals

$$\text{Res}_0(f) = 0.$$

IV. 2 Applications to Integrals

Example 1

We want to calculate

$$\int_{-\infty}^{+\infty} \frac{1}{x^2 + 1} dx$$

Towards that end, we study the function $f(z) = \frac{1}{z^2 + 1}$

We introduce the linear segment $L_r : [-r, r] \rightarrow \mathbb{C}$, $t \mapsto t$

Then

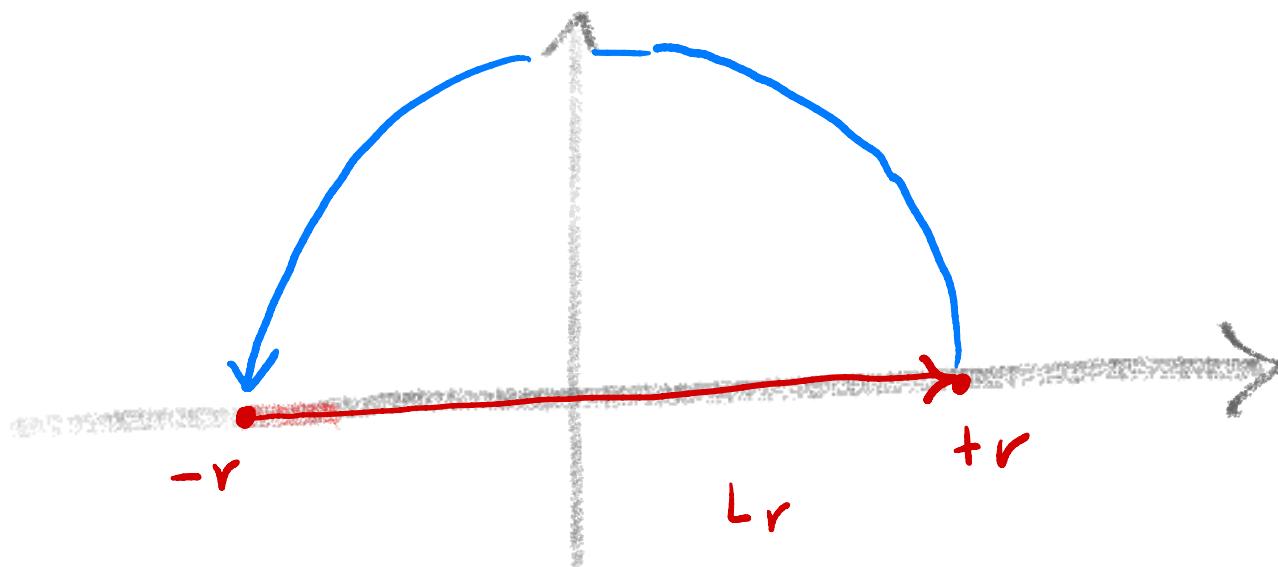
$$\int_{L_r} f(z) dz = \int_{-r}^r \frac{1}{z^2 + 1} dz \xrightarrow[r \rightarrow \infty]{} \int_{-\infty}^{+\infty} \frac{1}{z^2 + 1} dz$$

We make a detour through the complex plane, introducing the half-arc

$$C_r : [0, \pi] \rightarrow \mathbb{C}, \quad t \rightarrow r \cdot e^{it}$$

of radius r centered at 0.

We compute the line integral of f along $\Gamma_r := L_r \cup C_r$



Γ_r is a closed piecewise differentiable curve.

We apply the residue theorem.

$$\int_{\Gamma_r} f(z) dz = \int_{\Gamma_r} \frac{1}{z^2 + 1} dz = \int_{\Gamma_r} \frac{1}{(z+i)(z-i)} dz$$

By the residue theorem, for very large $r > 0$

$$\int_{\Gamma_r} f(z) dz = 2\pi i \cdot \text{Res}_i(f)$$

We compute the residue:

$$\text{Res}_i(f) = \lim_{z \rightarrow i} (z-i) f(z) = \lim_{z \rightarrow i} \frac{1}{z+i} = \frac{1}{2i}$$

Hence

$$\int_{\Gamma_r} f(z) dz = \pi$$

[Exercise: $\text{Res}_{-i}(f) = \dots$, not needed here]

Here, we have used:

- C_r encloses only the pole at i , not the one at $-i$, and so only the residue at i matters for the residue theorem
- The pole at i is of first order, which determines the formula for the computing the residue.

For our original goal, we observe

$$\pi = \int_{C_r} f(z) dz = \int_{L_r} f(z) dz + \int_{C_r} f(z) dz$$

As $r \rightarrow \infty$, we already know

We want to show this goes to zero as $r \rightarrow \infty$

$$\int_{L_r} f(z) dz \longrightarrow \int_{-\infty}^{+\infty} f(z) dz$$

What about the integral along C_r in the limit?

$$\int_{C_r} f(z) dz = \int_0^\pi \frac{1}{r^2 e^{2it} + 1} \cdot r i e^{it} dt$$

We bound the absolute value of the integral :

$$\left| \int_{C_r} f(z) dz \right| \leq \int_0^\pi \frac{1}{|r^2 e^{2it} + 1|} |r i e^{it}| dt$$

We have

$$|r i e^{it}| = r \cdot |i e^{it}| = r \cdot \underbrace{|i|}_{=1} \cdot \underbrace{|e^{it}|}_{=1} = r$$

and for r large, we have approximately

$$|r^2 e^{2it} + 1| \approx |r^2 e^{2it}| = r^2.$$

Hence, for large r we find :

$$\left| \int_{C_r} f(z) dz \right| \approx \int_0^\pi \frac{r}{r^2} = \frac{\pi}{r} \xrightarrow[r \rightarrow \infty]{} 0$$

As r goes to ∞ , the absolute value of the integral along C_r goes to zero, and so the value of the integral itself must go to zero.

In summary

$$\pi = \int_{\Gamma_r} f(z) dz = \int_{L_r} f(z) dz + \int_{C_r} f(z) dz$$

$\xrightarrow[r \rightarrow \infty]{} \int_{-\infty}^{+\infty} \frac{1}{z^2 + 1} dz + 0$

Hence

$$\boxed{\int_{-\infty}^{+\infty} \frac{1}{x^2 + 1} dx = \pi}$$

Example 2 Consider the indefinite integral

$$\int_{-\infty}^{+\infty} R(x) \cdot e^{i\alpha x} dx, \quad \text{where } \alpha \geq 0,$$

and where $R(x) = P(x) / Q(x)$ is a rational function such that P and Q are polynomials with

- $\deg Q \geq \deg P + 2$
- $Q(x) \neq 0$ for all $x \in \mathbb{R}$

Previous example is a special case

$$P(x) = 1, \quad Q(x) = x^2 + 1, \quad \alpha = 0$$

Since Q has at most $\deg Q$ zeroes throughout \mathbb{C} , the function $R(z) = P(z) / Q(z)$ has at most $\deg Q$ singularities.

[Fundamental theorem of algebra]

Let $r > 0$ be a radius large enough such that $B_r(0)$ contains all singular points of $R(z)$. We introduce

$$L_r = \{ z \in \mathbb{C} \mid \operatorname{Im}(z) = 0, \quad -r \leq \operatorname{Re}(z) \leq r \}$$

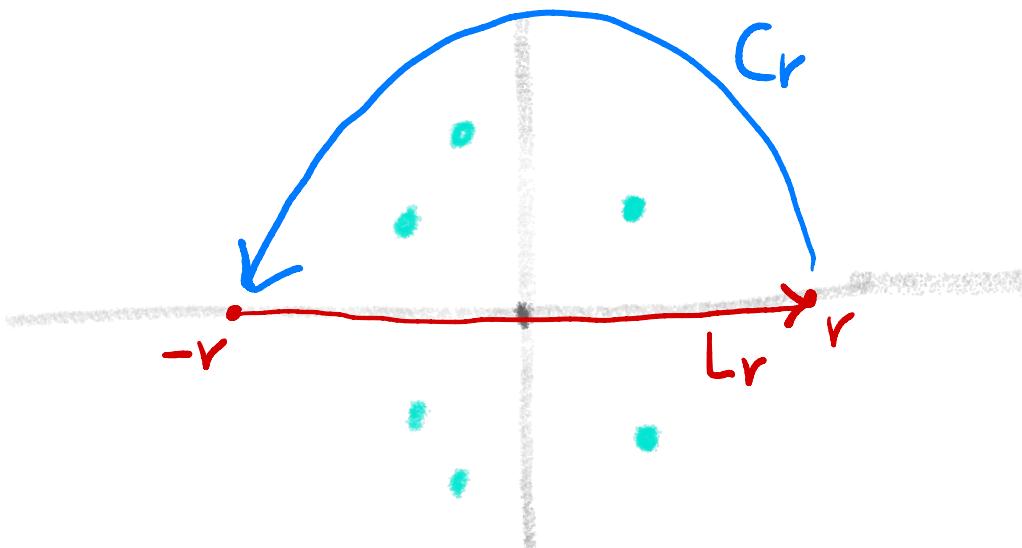
$$C_r = \{ z \in \mathbb{C} \mid z = r e^{i\theta}, \quad 0 \leq \theta \leq \pi \}$$

We join both curves to a closed curve Γ_r .

The function $R(z) e^{i\alpha z}$ has singularities in the upper half-plane:

$$z_1, z_2, \dots, z_m$$

For r large enough, Γ_r encircles those singularities.



$$\int_{\Gamma_r} R(z) e^{i\alpha z} dz = 2\pi i \sum_{j=1}^m \text{Res}_{z_j}(R(z) e^{i\alpha z})$$

In addition,

$$\int_{\Gamma_r} R(z) e^{i\alpha z} dz = \int_{-r}^{+r} R(x) e^{i\alpha x} dx + \int_{C_r} R(z) e^{i\alpha z} dz$$

In the limit

$$\int_{-r}^{+r} R(x) e^{i\alpha x} dx \xrightarrow{r \rightarrow \infty} \int_{-\infty}^{+\infty} R(x) e^{i\alpha x} dx$$

It remains to control the integral over C_r : it is sufficient to show that the absolute value goes to zero as $r \rightarrow \infty$.

$$\left| \int_{C_r} R(z) e^{i\alpha z} dz \right| = \left| \int_0^\pi \frac{P(re^{it})}{Q(re^{it})} e^{i\alpha re^{it}} \cdot ire^{it} dt \right|$$

$$\leq \int_0^\pi \left| \frac{P(re^{it})}{Q(re^{it})} \right| \cdot |e^{i\alpha r e^{it}}| \cdot \underbrace{|i| \cdot r \cdot |e^{it}|}_{=1} dt$$

We use

$$e^{i\alpha r e^{it}} = e^{i\alpha r (\cos(t) + i \sin(t))}$$

$$= e^{i\alpha r \cos(t)} \cdot e^{\alpha r \sin(t)}$$

$$= e^{i\alpha r \cos(t)} \cdot e^{-\alpha r \sin(t)}$$

on the complex
unit circle

$$e^{\alpha r \sin(t)}$$

≤ 1 because $\alpha \geq 0$ and
 $\sin(t) \geq 0$ for $0 \leq t \leq \pi$

so

$$|e^{i\alpha r e^{it}}| \leq 1.$$

Finally,

$\left| \frac{P(re^{it})}{Q(re^{it})} \right| \cdot r$ behaves proportionally like

$$\frac{1}{r^2} \cdot r = \frac{1}{r} \quad \text{for } r \text{ large}$$

This is where we use $\deg Q \geq \deg P + 2$.

In summary,

$$\left| \int_{C_r} f(z) dz \right| \xrightarrow[r \rightarrow \infty]{} \approx \pi \cdot \frac{1}{r}$$

which vanishes as r goes to infinity. Final result

$$\int_{-\infty}^{+\infty} R(z) e^{iz} dz = 2\pi i \sum_{j=1}^m \text{Res}_{z_j} (R(z) e^{iz})$$

Example 3 We can compute the integral

$$\int_{-\infty}^{+\infty} \frac{x^2}{16 + x^4} dx = \int_{-\infty}^{+\infty} \frac{x^2}{16 + x^4} e^{i0x} dx$$

Here $R(z) = P(z) / Q(z)$ with $P(z) = z^2$, $Q(z) = 16 + z^4$.