

01.05.2025

VII. 1. First-order ordinary differential equations

Let $a : [0, \infty) \rightarrow \mathbb{R}$ and $f : [0, \infty) \rightarrow \mathbb{R}$ be piecewise continuous functions. Let $y_0 \in \mathbb{R}$.

We study the initial value problem

$$y'(t) + a(t) y(t) = f(t), \quad t > 0$$

$$y(0) = y_0$$

This also known as 1st order Cauchy problem.

Typical application: exponential growth/decay over time $t > 0$

y_0 is the initial value at time $t = 0$.

$a(t)$ is the rate of growth/decay at time t

$f(t)$ is the source term at time t

Example: $y(t)$ is the population size of bacteria, starting with size y_0 at time $t = 0$. The source term $f(t)$ denotes additional influx/outflux of bacteria.

$$y'(t) = f(t) - a(t)y(t)$$

The population grows/shrinks by itself proportionally to its size if $a(t) < 0$ / $a(t) > 0$.

Example: Radioactive decay, financial interests

To solve the initial value problem

$$\begin{aligned} y'(t) + a(t) y(t) &= f(t), & t > 0 \\ y(0) &= y_0 \end{aligned}$$

we use the Laplace transform.

For simplicity, we assume $a(t) = a \in \mathbb{R}$.

Applying the Laplace transform yields:

$$z Y(z) - y(0) + a \cdot Y(z) = F(z)$$

We use $y(0) = y_0$ and isolate $Y(z)$:

$$(z + a) Y(z) = F(z) + y_0$$

$$Y(z) = \frac{F(z) + y_0}{z + a}$$

Having isolated $Y(z)$, we try to invert the Laplace transform:

$$Y(z) = \frac{1}{z+a} F(z) + y_0 \frac{1}{z+a}$$

We know that

$$\frac{1}{z+a} = \mathcal{L}[e^{-at}]$$

Hence,

$$Y(z) = \mathcal{L}[e^{-at}] \mathcal{L}[f] + y_0 \mathcal{L}[e^{-at}]$$

We use the formula for the Laplace transform of convolutions:

$$y(t) = \int_0^t f(s) e^{-a(t-s)} ds + y_0 e^{-at}$$

This solves the initial value problem:

we manually check the derivatives and the initial value.

Clearly, for $t = 0$, we have $y(0) = y_0$. Moreover,

$$\begin{aligned}\frac{d}{dt} y(t) &= f(t) + \underbrace{\int_0^t f(s) (-a) e^{-a(t-s)} ds}_{\text{Leibniz integral formula}} + (-a)y_0 e^{-at} \\ &= f(t) - a \left(\int_0^t f(s) e^{-a(t-s)} ds + y_0 e^{-at} \right) \\ &\quad = y(t)\end{aligned}$$

$$\Rightarrow y'(t) = f(t) - a y(t)$$

Remark: when the growth/decay coefficient $a(t)$ is not constant, then the argument is considerably more complicated.

Special case: $f(t) = 0$. Then $y'(t) = -\alpha y(t)$ is solved by

$$y(t) = y_0 e^{-\alpha t}$$

Special case: $\alpha(t) = 0$. Then $y'(t) = f(t)$ is solved by

$$y(t) = \int_0^t f(s) ds + y_0$$

First-order initial value problems need initial data for the function itself. Second-order initial value problems need initial data for the function and its first derivative.

VII. 2. Second-order ordinary differential equations

We consider the initial value problem: given $\omega, \alpha \geq 0$, we search $y: [0, \infty) \rightarrow \mathbb{R}$ twice-differentiable such that

$$y''(t) = -\omega^2 y(t) - 2\alpha y'(t), \quad t > 0$$

$$y(0) = y_0$$

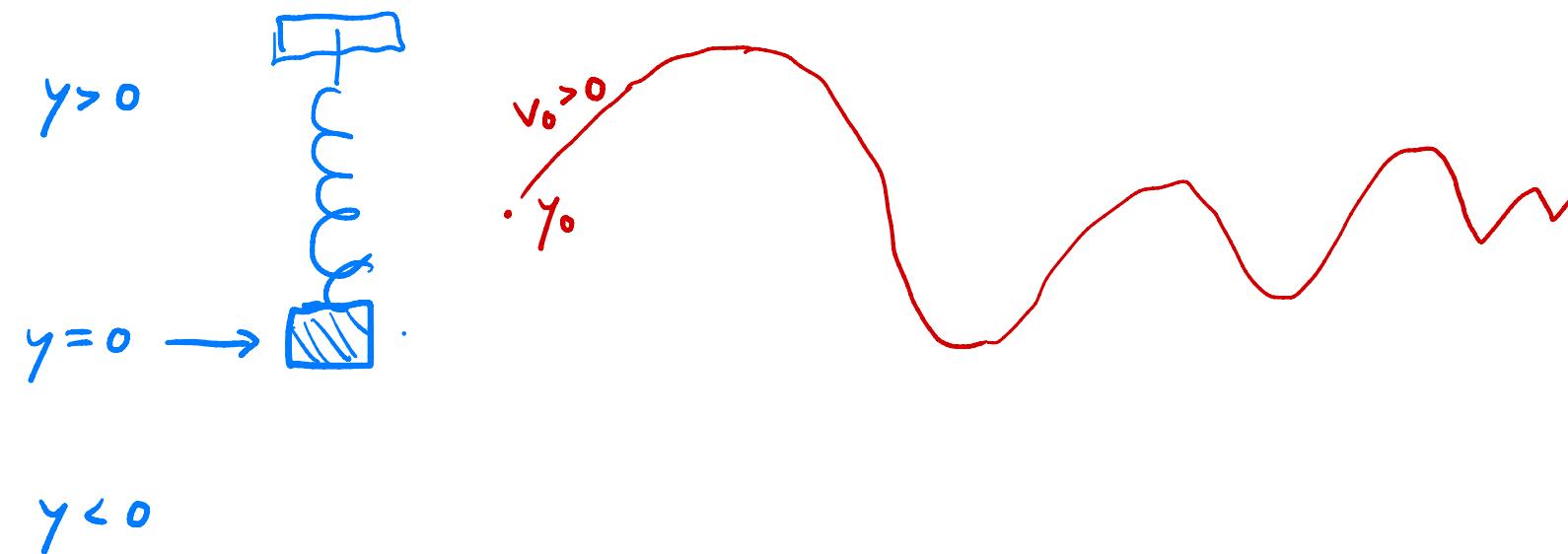
$$y'(0) = v_0$$

Here, y_0 and v_0 are the initial position and velocity of the system and $y''(t)$ denotes the acceleration at time $t > 0$.

When $y(t)$ is large, then $-\omega^2 y(t)$ effects negative acceleration.

When $y'(t)$ is large, then $-2\alpha y'(t)$ will cause dampening

Example: Harmonic oscillator. Here $\omega, \alpha \geq 0$ are material parameters.



To solve this problem, we use the Laplace transform.

This will involve a case distinction, depending on ω and α .

The Laplace transform of

$$y''(t) = -\omega^2 y(t) - 2\alpha y'(t)$$

is the following

$$z^2 Y(z) - z y(0) - y'(0) = -\omega^2 Y(z) - 2\alpha(z Y(z) - y(0))$$

We use the initial data,

$$z^2 Y(z) - z y_0 - v_0 = -\omega^2 Y(z) - 2\alpha z Y(z) + 2\alpha y_0,$$

and isolate $Y(z)$:

$$(z^2 + \omega^2 + 2\alpha z) Y(z) = z y_0 + v_0 + 2\alpha y_0$$

$$Y(z) = y_0 \frac{z}{z^2 + \omega^2 + 2\alpha z} + \frac{2\alpha y_0 + v_0}{z^2 + \omega^2 + 2\alpha z}$$

$$= y_0 \frac{z}{(z + \alpha)^2 + \omega^2 - \alpha^2} + \frac{2\alpha y_0 + v_0}{(z + \alpha)^2 + \omega^2 - \alpha^2}$$

[completing the square: $z^2 + \omega^2 + 2\alpha z = z^2 + 2\alpha z + \alpha^2 + \omega^2 - \alpha^2$]

We conduct a case distinction in $\omega^2 - \alpha^2$.

Case $\omega^2 - \alpha^2 = 0$

$$\begin{aligned} Y(z) &= y_0 \frac{z}{(z + \alpha)^2} + \frac{2\alpha y_0 + v_0}{(z + \alpha)^2} \\ &= \frac{y_0 z + 2\alpha y_0 + v_0}{(z + \alpha)^2} \\ &= y_0 \frac{(z + \alpha)}{(z + \alpha)^2} + \frac{\alpha y_0 + v_0}{(z + \alpha)^2} \\ &= y_0 \frac{1}{z + \alpha} + \frac{\alpha y_0 + v_0}{(z + \alpha)^2} \end{aligned}$$

We apply the inverse Laplace transform or use Laplace transform table:

$$\mathcal{L}[e^{-\alpha t}] = \frac{1}{z + \alpha}, \quad \mathcal{L}[te^{-\alpha t}] = \frac{1}{(z + \alpha)^2}$$

Therefore,

$$\begin{aligned} Y(z) &= y_0 \mathcal{L}[e^{-\alpha t}] + (\alpha y_0 + v_0) \mathcal{L}[te^{-\alpha t}] \\ \Rightarrow y(t) &= y_0 e^{-\alpha t} + (\alpha y_0 + v_0) t e^{-\alpha t} \\ &= e^{-\alpha t} (y_0 + t(\alpha y_0 + v_0)) \end{aligned}$$

This solves the ordinary differential equation.

Physically, this is the fastest non-oscillatory return to equilibrium.

If $v_0 = 0$, then the typical profile is:

Case $\omega^2 - \alpha^2 > 0$

We use the following formulas :

$$\mathcal{L}[e^{\beta t} \cos(\gamma t)] = \frac{z - \beta}{(z - \beta)^2 + \gamma^2}$$

$$\mathcal{L}[e^{\beta t} \sin(\gamma t)] = \frac{\gamma}{(z - \beta)^2 + \gamma^2}$$

With $\beta = -\alpha$ and $\gamma = \sqrt{\omega^2 - \alpha^2}$, this becomes

$$\mathcal{L}[e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t)] = \frac{z + \alpha}{(z + \alpha)^2 + \omega^2 - \alpha^2}$$

$$\mathcal{L}[e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t)] = \frac{\sqrt{\omega^2 - \alpha^2}}{(z + \alpha)^2 + \omega^2 - \alpha^2}$$

Now :

$$y(t) = y_0 e^{-\alpha t} \cos\left(\sqrt{\omega^2 - \alpha^2} t\right) + \frac{\alpha y_0 + v_0}{\sqrt{\omega^2 - \alpha^2}} e^{-\alpha t} \sin\left(\sqrt{\omega^2 - \alpha^2} t\right)$$

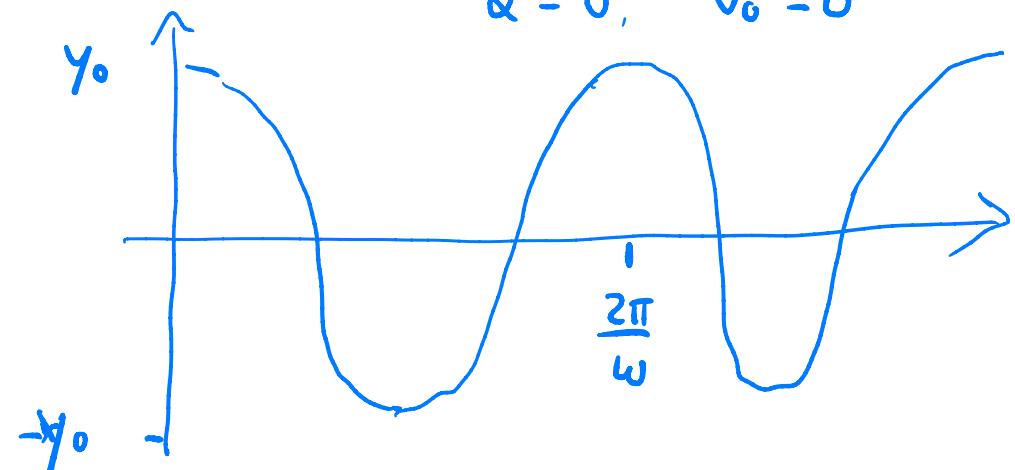
Physically, oscillatory decay

$$\alpha = 0, v_0 = 0$$

\Rightarrow

$$y(t) = y_0 \cos(\omega t)$$

For positive $\alpha > 0$, this oscillation will decay to zero over time



Case $\omega^2 - \alpha^2 < 0$

$$Y(z) = y_0 \frac{z}{(z+\alpha)^2 - (\alpha^2 - \omega^2)} + \frac{2\alpha y_0 + v_0}{(z+\alpha)^2 - (\alpha^2 - \omega^2)}$$

Note $\alpha^2 - \omega^2 > 0$. We use the Laplace transforms:

For $\beta, \gamma \in \mathbb{R}$,

$$\mathcal{L}[e^{\beta t} \cosh(\gamma t)] = \frac{z - \beta}{(z - \beta)^2 - \gamma^2}$$

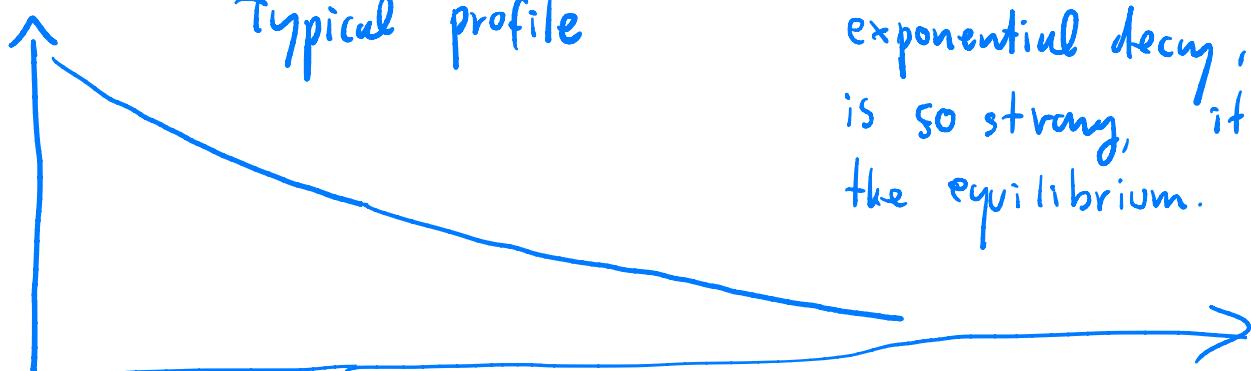
$$\mathcal{L}[e^{\beta t} \sinh(\gamma t)] = \frac{\gamma}{(z - \beta)^2 - \gamma^2}$$

We use $\beta = -\alpha$, $\gamma = \sqrt{\alpha^2 - \omega^2}$.

$$Y(z) = y_0 \frac{d}{2} \left[e^{-\alpha t} \cosh \left(\sqrt{\alpha^2 - \omega^2} t \right) \right]$$

$$+ \frac{\alpha y_0 + v_0}{\sqrt{\alpha^2 - \omega^2}} \mathcal{L} \left[e^{-\alpha t} \sinh \left(\sqrt{\alpha^2 - \omega^2} t \right) \right]$$

$$\Rightarrow y(+) = y_0 e^{-\alpha t} \cosh(\sqrt{\alpha^2 - \omega^2} t) + \frac{\alpha y_0 + v_0}{\sqrt{\alpha^2 - \omega^2}} e^{-\alpha t} \sinh(\sqrt{\alpha^2 - \omega^2} t)$$



exponential decay, but the dampening $\alpha > 0$ is so strong, it slows down the decay towards the equilibrium.

