

CATALOG

Question 28: 16 points

<input type="text"/>	0	<input type="text"/>	1	<input type="text"/>	2	<input type="text"/>	3	<input type="text"/>	4	<input type="text"/>	5	<input type="text"/>	6	<input type="text"/>	7	<input type="text"/>	8
<input type="text"/>	9	<input type="text"/>	10	<input type="text"/>	11	<input type="text"/>	12	<input type="text"/>	13	<input type="text"/>	14	<input type="text"/>	15	<input style="background-color: black; color: black; width: 20px; height: 20px; vertical-align: middle; text-align: center; font-size: 10px; font-weight: bold;" type="text"/>	16		

Do not write here.

Consider the following partial differential equation over the interval $[0, 1]$:

$$\frac{d^2}{dt^2}u(x,t) - 2\frac{d}{dt}u(x,t) = \frac{d^2}{d^2x}u(x,t), \quad 0 < x < 1, \quad t > 0.$$

Suppose we have Dirichlet boundary conditions

$$u(0, t) = u(1, t) = 0, \quad t > 0,$$

and initial data

$$u(x, 0) = 0, \quad 0 < x < 1,$$

$$\frac{d}{dt}u(x,0) = 1, \quad 0 < x < 1.$$

Express the solution $u(x, t)$ in terms of a Fourier sine series

$$u(x, t) = \sum_{n=1}^{\infty} b_n(t) \sin(\pi n x).$$