Exercices on distributions

Exercice 1. Let H(t) be the piece-wise continuous function

1 t>0
H(t) = -
0 t<0

and define u(t) = cos(t)H (t). Verify that u(t) is a solution of the following differential equation in
Dp (i.e. distributional differential equation):

(D?u,-) + (u,") = (Ddo, )
where (g, ) : D — R is the Dirac mass distribution, defined by
(%0, ) = ¢(0)

HINTS: use the definition of distributional derivative; use integration by part; recall that the
test functions ¢ and their derivatives are zero outside a bounded set.

Answer: We start by computing the second derivative of u(t), where we use the fact that

(H(t))" = do(t):

u'(t) = —sint - H(t) + cost - dp(t)
u”(t) = —cost- H(t) — 2sint - §o(t) + cost - &y(t) (1)

We know that

/m%mﬂw&:ﬂm

Also, using the integration by part we have

| awsma=- [ soroa=-ro 2)
Hence, using (1)-(2) we can derive
(D*u, ¢) + (u, ¢) = — /O; cost - H(t)p(t) dt —2 /Z sint - 8o (t)p(t) dt
+ /_Z cost - 6,(t)p(t) dt+/_z cost - H(t)p(t)dt

= —2sin0 - ¢(0) — cos0¢'(0) + sin 06(0) = —¢'(0) = (Ddy, ¢)



Exercice 2. Consider the function:

¢ 0<t<1
fy=4 2—t 1<t<2
0 otherwise

Compute the first two distributional derivatives of f, i.e. < Df, — > and < D?f, — > in Dp.

Answer: Let ¢ be a compactly supported continuous test function taken from CZ°(R), f(z)
defines a distribution on C2°(R). Hence,

(Df. ) = —(f. )
+oo
. / f(@)¢ (@)de

+oo

- /_io 0¢'(x)dx — /01 r' (x)dr — /12(2 —x)¢(x)dx — /2 0/ (w)d
— /1 x¢/ (z)dx — /2(2 — )¢/ (x)dx

/qS da:— arcb / —o(x da:— (2—2)p(x )}
:3A¢WMm—m?+A-W@Mx+mD
:iﬂl¢@”“*iﬂ —¢(z)dx

1 0<x<1
Df = -1 1<z<2

0 otherwise

therefore

the second-order distributional derivative is then computed as

_<Df7¢/>

“+oo

= D(f(2))¢'(z)dz

/<z> dm—/—>¢(>daz
= [o@], - [ - o),

= —0(1) + 6(0) — [-¢(2) + ¢(1)]
= 0(0) + ¢(2) — 2¢(1)

+oo
_ /_ (8(z) + 0(x — 2) — 20(x — 1))¢(x)dx

hence
D*f =6(x) +6(x —2) — 25(x — 1)
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Exercice 3. Let f € D be the k-th distributional derivative of some continuous function h
with supp(h) C [0, +oo[. Using the Laplace transform, solve the following differential equation in
Dy
<Du’ > + a(“a > = <f7 >
HINTS: Recall that one can define the convolution of distributions, and that for distributions
as well as for functions, the Laplace transform of the convolution is the product of the Laplace
transforms.

Answer: Given the assumption on the distribution f, its Laplace transform L(f) exists. Con-
sequently we have

L(f)(s) = (f,e™") = (Du,e™™) + a(u,e™™)

that is
L(f)(s) = L(Du)(s) + aL(u)(s).

Since L(Du)(s) = sL(u)(s), we get

hence

s+a
Considering that the Laplace transform of a convolution is the product of the Laplace transforms
we get

u=fxe

Exercice 4. Let consider the piece-wise continuous function Gy(z) = —3|z — y|. Verify that
Gy(x) satisfied the following identity in D :

where (d,,-) : D — R is the Dirac mass distribution concentrated at y,i.e. it is defined by

{6y, ) = ©(y)

Answer: The second derivative d;% of the distribution G, € D’'(R) is defined by:

d’G
< d$2y ) ¢> = <Gy, ¢,l>

for all test functions ¢ € D(R). By definition, G (z) = 1(z — y) on ]—o0,y] and Gy(z) = 3(y — z)
on [y, +0ol, hence

+oo

Gty =5 | [ w-ne@ies [T od ).

—00 Yy



By using integration by part, and by recalling that the test functions ¢ € D(R) and their
derivatives vanish at oo, we get

[ @-v / ¢(@)da + [(x - p)d @]
(@) o, + 0 0]
=—[¢(y)—0]
= —d(y).

Similarly

+oo +oo
[ w-ad@ar= [ @ [y -2 @)
— (@) + 00

[0 —¢(y)]
= —o(y)
Finally we get ,
(00 4) = S 1-6) — 6(0)] = ~6(s) = ~(3,,6)




