

MATH-207(a) Analysis IV

Additional exercises for exam

Exercice 1. See exercise sheets.

Answer. See solutions sheets. ■

Exercice 2. Suppose $y : [0, \infty) \rightarrow \mathbb{R}$ satisfies

$$y'''(t) + y(t) = e^{-t}, \quad y(0) = 1, \quad y'(0) = 0, \quad y''(0) = -1$$

Find the Laplace transform $\mathcal{L}(y)$.

Answer. Let us denote $Y(s) = \mathcal{L}(y)(s)$. Applying the Laplace transform to the equation and using the initial conditions we find

$$\begin{aligned} s^3Y(s) - s^2y(0) - sy'(0) - y''(0) + Y(s) &= \frac{1}{s+1}, \\ \Leftrightarrow (s^3 + 1)Y(s) - s^2 + 1 &= \frac{1}{s+1}, \\ \Leftrightarrow Y(s) &= \frac{(s^2 - 1)(s + 1) + 1}{(s + 1)^3(s + 1)}. \end{aligned}$$
■

Exercice 3. Given the curve

$$\gamma : [0, 2\pi] \rightarrow \mathbb{C}, \quad \theta \mapsto 2e^{\theta i}$$

compute the curve integrals

$$\int_{\gamma} \frac{(z + 1)^3}{z} dz, \quad \int_{\gamma} \frac{\sin(z)}{z} dz, \quad \int_{\gamma} \frac{\cosh(z)}{z} dz.$$

Answer. For the three curves we can use the residue theorem. All the integrands have only one pole in $z_0 = 0$ that is enclosed by the closed curve (a circle of radius 2 centered in the origin).

Therefore, it is sufficient to compute the residue at the origin for each of the integrands to compute the integrals. We find

$$\begin{aligned}\text{Res}_0\left(\frac{(z+1)^3}{z}\right) &= \lim_{z \rightarrow 0} z \frac{(z+1)^3}{z} = 1. \quad (\text{pole or order 1}) \\ \text{Res}_0\left(\frac{\sin(z)}{z}\right) &= 0 \quad (\text{removable singularity}) \\ \text{Res}_0\left(\frac{\cosh(z)}{z}\right) &= \lim_{z \rightarrow 0} z \frac{\cosh(z)}{z} = 1. \quad (\text{pole or order 1})\end{aligned}$$

Therefore

$$\begin{aligned}\int_{\gamma} \frac{(z+1)^3}{z} dz &= 2\pi i \\ \int_{\gamma} \frac{\sin(z)}{z} dz &= 0 \\ \int_{\gamma} \frac{\cosh(z)}{z} dz &= 2\pi i\end{aligned}$$

■

Exercice 4. Find the preimage under the Laplace transform of the function

$$F(z) = \frac{3}{(z-1)^2} + \frac{5}{(z-3)^2 - 1}.$$

Answer. Exploiting the table of known Laplace transforms and its properties we find that

$$f(t) := \mathcal{L}^{-1}(F)(t) = 3te^t + 5e^{3t} \sinh(t).$$

■

Exercice 5. Compute the Laplace transform of the following functions:

$$\begin{aligned}f(t) &= t^3 + \sin(10t) + e^{6t} \cos(5t) + \int_0^t e^{-t} \cosh(t) dt \\ g(t) &= \int_0^t \int_0^u e^{-2v} \sinh(v) dv du \\ h(t) &= \int_0^t \sin(s) \cos(t-s) ds, \\ j(t) &= e^{-2t} - 2te^{-2t}\end{aligned}$$

The functions are understood to be zero for non-positive $t < 0$.

Answer. Exploiting the table of known Laplace transforms and its properties we find that

$$\begin{aligned} F(s) &= \frac{6}{s^4} + \frac{10}{s^2 + 100} + \frac{s - 6}{(s - 6)^2 + 25} + \frac{s + 1}{s^2(s + 2)}, \\ G(s) &= \frac{1}{s^2(s + 3)(s + 1)}, \\ H(s) &= \frac{s}{(s^2 + 1)^2}, \\ J(s) &= \frac{1}{s + 2} - \frac{2}{(s + 2)^2}. \end{aligned}$$

For F we exploited the linearity of Laplace transform and for the last term the property of the Laplace transform of an integral. For G we exploited two times sequentially the property of the Laplace transform of an integral: do the Laplace transform of the inner integral then of the outer integral. For H it is the Laplace transform of a convolution. For J there is nothing special going on. ■