
Exam training I

Exercice 1. Find a holomorphic function f : C → C such that its real part is:

u(x, y) = x2 − y2 + e−x cos y

Answer: Using the Cauchy-Riemann equations we get{
ux = 2x− e−x cos y = vy

uy = −2y − e−x sin y = −vx
⇔

{
vy = 2x− e−x cos y
vx = 2y + e−x sin y

From the second equation we get

v(x, y) = α(y) + 2xy − e−x sin y.

By taking the derivative of v with respect to y, and using the first equation, we get

α′(y) = 0 ⇒ α(y) = α0 = constant.

Consequently

f = u+ iv =
(
x2 − y2

)
+ e−x cos y + i

(
2xy − e−x sin y

)
+ iα0.

But since z2 = x2 − y2 + 2ixy and cos y − i sin y = e−iy, we get

f(z) = z2 + e−z + iα0

with α0 ∈ R.

Exercice 2. Using the Cauchy Theorem and the Cauchy integral formula compute the following
integrals:

(1) ∫
Γ

z3 + 2z2 + 2

z − 2i
dz where Γ =

{
z ∈ C | |z − 2i| = 1

4

}
(2) ∫

Γ

3z2 + 2z + sin(z + 1)

(z − 2)2
dz where Γ = {z ∈ C | |z − 2| = 1}

Answer:
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(1) Using the Cauchy integral formula we have∫
Γ

z3 + 2z2 + 2

z − 2i
dz = 2πi(z3 + 2z2 + 2)z=2i = 16π − 12i

(2) Using the Cauchy integral formula we have∫
Γ

3z2 + 2z + sin(z + 1)

(z − 2)2
dz =

2πi

1!
(3z2 + 2z + sin(z + 1))(1)z=2

=
2πi

1!
(6z + 2 + cos(z + 1))z=2 = 2πi(14 + cos(3))

Exercice 3. For the following functions, compute the Laurent expansion around z0 and determine
whether z0 is a regular or singular point; in the latter case, say what is the order of pole at z0.
Recall that if f is holomorphic at z0 its Laurent expansion is simply the Taylor expansion.

(1) f(z) = z
1+z2

and z0 = 1

(1) f(z) = z2+2z+1
1+z and z0 = −1

(3) (Bonus) f(z) = z2+z+1
z2−1

and z0 = 1

Answer:

(1) Since the function h(z) = z is holomorphic in C, g(z) = 1
1+z2

is holomorphic except in z = ±i,
we can conclude that z0 = 1 is a regular point and therefore Laurent series is equal to Taylor
series around z0. We start by deducing that

g(z) =
1

1 + z2
=

−1

2i

(
1

i− z
+

1

i+ z

)
=

−1

2i

(
1

(i− 1)− (z − 1)
+

1

(i+ 1) + (z − 1)

)
=

−1

2i

[
1

i− 1
· 1

1− z−1
i−1

+
1

i+ 1
· 1

1 + z−1
i+1

]

Using the formula of Taylor expansion of 1
1+x at points z−1

i−1 and z−1
i+1 , we get

g(z) =
−1

2i

[
1

i− 1

+∞∑
n=0

1

(i− 1)n
(z − 1)n +

1

i+ 1

+∞∑
n=0

(−1)n

(i+ 1)n
(z − 1)n

]

=
−1

2i

+∞∑
n=0

(
1

(i− 1)n+1
+

(−1)n

(i+ 1)n+1

)
(z − 1)n

=
+∞∑
n=0

(−1)n

2i

[
1

(1− i)n+1
− 1

(1 + i)n+1

]
(z − 1)n
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By noting
1− i =

√
2e−iπ

4 et 1 + i =
√
2ei

π
4

The coefficient cn associated with the term (z − 1)n can be simplified as

cn =
(−1)n

2i

[
1

(1− i)n+1
− 1

(1 + i)n+1

]
= (−1)n

sin
[
(n+ 1)π4

]
2

n+1
2

Finally
f(z) = zg(z)

= (z − 1 + 1)
+∞∑
n=0

cn(z − 1)n

=
+∞∑
n=0

cn(z − 1)n+1 +
+∞∑
n=0

cn(z − 1)n

=
+∞∑
m=1

cm−1(z − 1)m + c0 +
+∞∑
n=1

cn(z − 1)n

= c0 +

+∞∑
n=1

(cn−1 + cn) (z − 1)n

(2)

f(z) =
z2 + 2z + 1

z + 1
=

(z + 1)2

z + 1
= z + 1

therefore z0 = −1 is a regular point. In this case, the Taylor expansion has the trivial
expression f(z) = z + 1.

(3)

f(z) =
z2 + z + 1

z2 − 1
= 1− 1

2(z + 1)
+

3

2(z − 1)

f(z) has two singular points z = ±1, the convergence happens when 0 < |z − 1| < 2, the
Taylor expansion of 1

1+z around z0 = 1 is given by

1

z + 1
=

1

2 + (z − 1)
=

1

2

1

1 + z−1
2

=
1

2

+∞∑
n=0

(−1)n
(
z − 1

2

)n

=

+∞∑
n=0

(−1)n

2n+1
(z − 1)n.

therefore

f(z) =
3

2

1

z − 1
+ 1− 1

2

+∞∑
n=0

(−1)n

2n+1
(z − 1)n

=
3

2

1

z − 1
+

3

4
+

+∞∑
n=1

(−1)n

2n+2
(z − 1)n
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Exercice 4. Compute the following real integrals:

(1) ∫ 2π

0

cos(θ) sin(2θ)

5 + 3 cos(2θ)
dθ

(2) ∫ +∞

−∞

x2

1 + x6
dx

Answer:

(1) We let z = eiθ and we find

cos θ =
eiθ + e−iθ

2
=

z + 1
z

2
=

z2 + 1

2z
(1)

cos(2θ) =
e2iθ + e−2iθ

2
=

z4 + 1

2z2
et sin(2θ) =

e2iθ − e−2iθ

2i
=

z4 − 1

2iz2
. (2)

then we define for f(cos θ, sin θ) = cos θ sin(2θ)(5 + 3 cos(2θ))−1

f̃(z) =
1

iz
f

(
1

2

(
z +

1

z

)
,
1

2i

(
z − 1

z

))
=

−
(
z2 + 1

) (
z4 − 1

)
6z2 (z2 + 3)

(
z2 + 1

3

) . (3)

We then find that the only singularities inside the unit circle are 0 which is a pole of order 2
and ± i√

3
which are poles of order 1. Their residues are therefore

Res i√
3

(f̃) = lim
z→ i√

3

 −
(
z2 + 1

) (
z4 − 1

)
6z2 (z2 + 3)

(
z + i√

3

)
 =

i

6
√
3

Res −i√
3

(f̃) = lim
z→ −i√

3

 −
(
z2 + 1

) (
z4 − 1

)
6z2 (z2 + 3)

(
z − i√

3

)
 = − i

6
√
3

Res0(f̃) = −1

2
lim
z→0

d

dz

[
z6 + z4 − z2 − 1

3z4 + 10z2 + 3

]
= 0.

(4)

We find that if γ is the unit circle, then∫ 2π

0

cos θ sin(2θ)

5 + 3 cos(2θ)
dθ =

∫
γ
f̃(z)dz

= 2πi

[
Res i√

3

(f̃) + Res −i√
3

(f̃) + Res0(f̃)

]
= 0.

(5)

This result could have been deduced immediately due to the symmetry.
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(2) By the triangle inequality, we have, if z = reiθ∣∣z6 + 1
∣∣ ≥ ||z6| − 1| =

∣∣r6 − 1
∣∣ . (6)

We write for r > 1∣∣∣∣∫
Cr

z2

1 + z6
dz

∣∣∣∣ =
∣∣∣∣∣
∫ π

0

(
reiθ

)2
1 + (reiθ)

6 ire
iθdθ

∣∣∣∣∣
≤

∫ π

0

r3

r6 − 1
dθ =

πr3

r6 − 1
→ 0 for r → ∞

(7)

Let r > 1 and γr = Cr ∪ Lr, where Cr is defined in the second question and Lr, is the line
segment [−r, r] on the real axis. The singularities of f(2) = 1+z2

1+z6
are the zeros of 1 + z6. Or

1 + z6 = 0 ⇔ z6 = −1 = ei(π+2πn) ⇔ z = e
iπ(1+2n)

6 , n = 0, 1...5. (8)

Only z0, z1 and z2 are inside γr and they are poles of order 1. We therefore have that their
residues are given using Proposition 11.5 (let p(z) = z2 and q(z) = 1 + z6 which implies
q′(z) = 6z5) by

Reszn

(
1 + z2

1 + z6

)
=

1

6z3n
= e−

iπ(1+2n)
2 =

(−1)n+1

6
i, n = 0, 1, 2. (9)

The residue theorem therefore allows us to write∫
γr

f(z)dz =

∫
Cr

f(z)dz +

∫
Lr

f(z)dz = 2πi
2∑

n=0

Reszn (f) =
π

3
. (10)

As ∫
Lr

f(z)dz =

∫ r

−r

x2

1 + x6
dx →

∫ ∞

−∞

x2

1 + x6
dx, when r → ∞ (11)

(cf. the second question) we deduce that∫ ∞

−∞

x2

1 + x6
dx = lim

r→∞

∫
γr

f(z)dz =
π

3
(12)

Exercice 5. With the help of the Table of Laplace transforms, find the Laplace transform of:

f(t) = e−2t(3 cos(6t)− 5 sin(6t))

Answer: see exercise 4 of session 7
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Exercice 6. For λ ∈ R and y0, y1 arbitrary values, find the solutions to:{
y′′(x) + λy(x) = 0, t > 0
y(0) = y0 y′(0) = y1

Answer: Let Y (z) = L(y)(z). We know that L (y′′) (z) = z2Y (z)− zy0 − y1. Thus we have

z2Y − zy0 − y1 + λY = 0 ⇒ Y =
zy0 + y1
z2 + λ

= y0
z

z2 + λ
+ y1

1

z2 + λ
.

We study the three cases λ = 0, λ < 0 and λ > 0.

Cas 1: λ = 0. Then the solution is trivially given by

y(x) = y0 + y1x

Cas 2: λ < 0. Let λ = −µ2. Then using the Table of Laplace transforms we get

y(x) = y0 cosh(µx) +
y1
µ

sinh(µx).

Cas 3: λ > 0. Let λ = µ2. Then using the Table of Laplace transforms we get

y(x) = y0 cos(µx) +
y1
µ

sin(µx).
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