

EXAM TRAINING I

Exercise 1. Find a holomorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that its real part is:

$$u(x, y) = x^2 - y^2 + e^{-x} \cos y$$

Exercise 2. Using the Cauchy Theorem and the Cauchy integral formula compute the following integrals

(1)

$$\int_{\Gamma} \frac{z^3 + 2z^2 + 2}{z - 2i} dz \quad \text{where} \quad \Gamma = \left\{ z \in \mathbb{C} \mid |z - 2i| = \frac{1}{4} \right\}$$

(2)

$$\int_{\Gamma} \frac{3z^2 + 2z + \sin(z+1)}{(z-2)^2} dz \quad \text{where} \quad \Gamma = \{z \in \mathbb{C} \mid |z-2| = 1\}$$

Exercise 3. For the following functions, compute the Laurent expansion around z_0 and determine whether z_0 is a regular or singular point; in the latter case, say what is the order of pole at z_0 . Recall that if f is holomorphic at z_0 its Laurent expansion is simply the Taylor expansion.

(1) $f(z) = \frac{z}{1+z^2}$ and $z_0 = 1$

(2) $f(z) = \frac{z^2 + 2z + 1}{1+z}$ and $z_0 = -1$

(3) (Bonus) $f(z) = \frac{z^2 + z + 1}{z^2 - 1}$ and $z_0 = 1$

Exercise 4. Compute the following real integrals:

(1)

$$\int_0^{2\pi} \frac{\cos(\theta) \sin(2\theta)}{5 + 3\cos(2\theta)} d\theta$$

(2)

$$\int_{-\infty}^{+\infty} \frac{x^2}{1+x^6} dx$$

Exercise 5. With the help of the Table of Laplace transforms, find the Laplace transform of

$$f(t) = e^{-2t}(3\cos(6t) - 5\sin(6t))$$

Exercise 6. For $\lambda \in \mathbb{R}$ and y_0, y_1 arbitrary values, find the solutions to to

$$\begin{cases} y''(t) + \lambda y(t) = 0, t > 0 \\ y(0) = y_0 \quad y'(0) = y_1 \end{cases}$$