
Physique 2ème année – Analyse IV Juhan Aru

Série 5
Avertissement : les exercices sont classés par thème, et non par ordre de difficulté.

Fonctions continues
Exercice 1 Trouvez une suite (fn)n≥1 ⊂ C1([0, 1],R) qui converge vers une fonction f ∈ C(D,R)
pour la norme uniforme ∥·∥∞, mais où f n’est pas dérivable. Montrez ensuite que si la convergence
a lieu pour la norme ∥f∥∞ + ∥f ′∥∞, alors la limite est aussi continûment dérivable.

Intégrale de Riemann
Exercice 2 Montrez que l’intégrale de Riemann vérifie certaines propriétés intéressantes :

• Toute fonction continue sur [0, 1] est intégrable au sens de Riemann.

• Toute fonction constante par morceaux est intégrable au sens de Riemann.

• Linéarité : si f, g sont intégrables au sens de Riemann sur [0, 1], alors leur somme l’est aussi,
et l’intégrale de la somme est égale à la somme des intégrales.

Fourier
Exercice 3 Nous cherchons à conclure la démonstration de la Proposition 1.9 des notes de cours.
Rappelons que nous considérons une fonction f ∈ C2([0, 1],R) deux fois continûment dérivable et
vérifiant f(0) = f(1) ainsi que f ′(0) = f ′(1). Nous avons montré dans la première partie de la
preuve que

fN :=

N∑
n=1

(sn sin(2πnx) + cn cos(2πnx))

converge pour la norme ∥ · ∥∞ vers une fonction g ∈ C([0, 1],R) lorsque N → ∞, où (sn)n≥1 et
(cn)n≥1 sont les coefficients de Fourier de f .

En utilisant la définition de fN et g, montrez que pour tout n ≥ 0,∫ 1

0

(f − g) cos(2πnx)dx =

∫ 1

0

(f − g) sin(2πnx)dx = 0,

et concluez la preuve à l’aide de la Proposition 1.12.

Exercice 4 (Noyau de Fejér, I) Un choix possible pour la fonction Tn,x0
dans les notes est le

noyau de Fejér, noté F x0
n . Le noyau de Fejér pour x0 = 0 est donné par

F 0
n(x) = 1 +

n−1∑
k=1

2

(
1− k

n

)
cos(2πkx).

Déduisez l’expression de F x0
n pour x0 ∈ (0, 1).

Ensuite, démontrez rigoureusement les propriétés suivantes, et ainsi le Lemme 1.13 :

1. ∀n ≥ 1, F x0
n (x) ≥ 0,

2. ∀n ≥ 1,
∫ 1

0
F x0
n (x)dx = 1,



3. ∀ε > 0, limn→∞
∫ 1

0
1|x−x0|>εF

x0
n (x)dx = 0.
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Exercice 5 (Noyau de Fejér, II)

1. Pour toute fonction f ∈ C([0, 1],R) vérifiant f(0) = f(1), montrez que∫ 1

0

f(x)F x0
n (x)dx −−−−→

n→∞
f(x0).

Ainsi, le noyau de Fejér est en un certain sens une ‘approximation de la fonction delta de
Dirac’.

2. Calculez formellement les coefficients de Fourier de la fonction delta de Dirac, c’est-à-dire
d’une « fonction »1 δx0 : [0, 1] → R+ pour un x0 ∈ [0, 1] fixé, telle que pour toute fonction
f ∈ C([0, 1],R) avec f(0) = f(1),∫ 1

0

f(x)δx0
(x)dx = f(x0),

et écrivez formellement sa série de Fourier.

3. Montrez que les coefficients de Fourier de F x0
n convergent vers l’expression formelle que vous

avez trouvée en 2.

Ensemble de Cantor
Exercice 6 (L’ensemble de Cantor) Considérons la construction itérative suivante : on pose
C0 = [0, 1] et on définit C1 en retirant le tiers central, c’est-à-dire C1 = C0 \ (1/3, 2/3). Pour
obtenir C2, on enlève ensuite le tiers central des deux intervalles restants. On poursuit ce procédé
par récurrence et on définit C = ∩i≥1Ci. Montrez que C est un ensemble fermé (c’est-à-dire que
[0, 1]\C est ouvert) avec un intérieur vide (c’est-à-dire qu’il n’existe pas d’intervalle ouvert contenu
dans C).

Il contient aussi une infinité non dénombrable d’éléments et est un ensemble parfait - ces deux
faits sont à démontrer dans la section bonus. On peut également le décrire comme l’ensemble des
nombres de [0, 1] dont le développement en base 3 ne contient aucun chiffre 1.

Pour le plaisir (non examinable)
Exercice 7 (L’ensemble de Cantor est parfait) Montrez que l’ensemble de Cantor C con-
tient une infinité non dénombrable d’éléments et est un ensemble parfait, c’est-à-dire qu’il n’a
aucun point isolé : pour tout x ∈ C, il existe une suite d’éléments xn ∈ C avec xn ̸= x qui
converge vers x.

1Une telle fonction n’existe pas au sens classique du terme !


