

Exercise sheet 4

Disclaimer: the exercises are not ordered by increasing difficulty, so you are welcome to work on them in any order that you want.

Spaces of continuous functions II

Exercise 1. When D is closed and bounded, is the uniform norm the only norm we can put on $(C(D, \mathbb{R}), +)$ such that completeness holds?

Exercise 2. Find an example of D that is not closed or not bounded, and $f \in C(D, \mathbb{R})$ such that $\|f\|_\infty$ is infinite.

Show that if we define a distance $\hat{d}_\infty(f, g) := \min(\|f - g\|_\infty, 1)$ on $C(D, \mathbb{R})$ where $D \subset \mathbb{R}$ is arbitrary, then $(C(D, \mathbb{R}), \hat{d}_\infty)$ is still complete. Argue that \hat{d}_∞ can not be represented by a norm, i.e. there is no norm $\|\cdot\|$ such that $\|f\| = \hat{d}_\infty(0, f)$.

Exercise 3 (Peano curve). The aims is to construct a surjective continuous map from $([0, 1], d_E)$ to $([0, 1]^2, d_E)$, i.e. a space-filling curve.

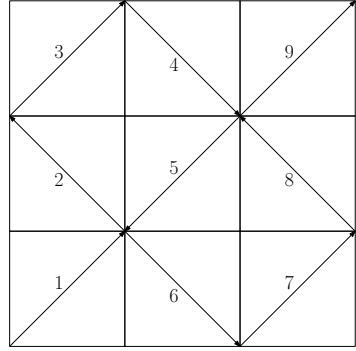


Figure 1: Step 2 of the iteration. The function is to be thought of as going along the squares in the order of the numbers in the picture.

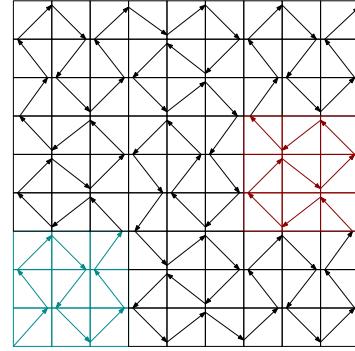


Figure 2: Step 3. The arrows' endpoints are represented slightly shifted for more readability

The idea is to define a sequence $(f_n)_{n \geq 1}$ of almost space-filling curves and to show that this sequence is Cauchy in $(C([0, 1], \mathbb{R}^2), d_\infty)$. We define these functions recursively: f_1 is simply the function $x \mapsto (x, x)$. For f_2 , divide the unit square $[0, 1]^2$ in \mathbb{R}^2 in nine squares of length $1/3$ and number them as in Picture 1. On the time interval $[i/9, (i+1)/9]$, $0 \leq i \leq 8$, f_2 draws the line segment in the square i corresponding to the arrow on the picture, where the head of the arrow indicates the endpoint $f_2((i+1)/9)$. For instance, for $x \in [0, 1/9]$, $f_2(x) = (3x, 3x)$, and for $x \in [1/9, 2/9]$, $f_2(x) = (1/3 - 3(x - 1/9), 1/3 + 3(x - 1/9))$. This defines a continuous function from $[0, 1]$ to $[0, 1]^2$ with $f_2(0) = (0, 0)$, $f_2(1) = (1, 1)$. Then, recursively, f_n draws diagonal line segments in a subdivision of $[0, 1]^2$ into 3^n smaller squares: at step $n+1$, each such square C is itself divided into nine, and f_{n+1} draws a line segment in each of the nine subsquares, in four possible orders. If f_n goes through C from the bottom-left corner to the top-right corner, then f_{n+1} goes through the nine squares in the order of Fig 1, see the blue part of Fig 2. If f_n goes through C through another corner, the ordering corresponds to the according rotation of Fig 1: for instance if

f_n goes through C by the bottom-right corner to the top-left corner, then the ordering of the nine subsquares is Fig 1 rotated by 180, see the red part of Fig 2.

1. Show that the sequence $(f_n)_{n \geq 1}$ defined as above is Cauchy, and therefore converges uniformly to a continuous function $f : [0, 1] \mapsto [0, 1]^2$.
2. Show that f is surjective.

Hint: What can you say of the distance between a point $(x, y) \in [0, 1]^2$ and the image of the function f_n , as $n \rightarrow \infty$?

Fourier II

Exercise 4. Consider the function $f : x \mapsto x$ on $[0, 1]$.

1. Show that the Fourier coefficients of f are $c_0 = 1/2$, $c_n = 0$, $s_n = -1/(\pi n)$ for $n \geq 1$.
2. Using that

$$\sum_{n=1}^{+\infty} \frac{z^n}{n} = -\log(1-z)$$

for $z \in \mathbb{D} \setminus \{1\}$ (the unit disk in \mathbb{C} minus 1), show that $\sum_{n=1}^{+\infty} \sin(2\pi n x)/(\pi n)$ converges and satisfies the identity

$$f(x) = x = \frac{1}{2} - \sum_{n=1}^{+\infty} \frac{\sin(2\pi n x)}{\pi n}.$$

3. Is the identity still valid at $x = 0$ or $x = 1$?

Remark 1. The function f from above, extended by periodicity as $f(x) := f(x - \lfloor x \rfloor)$, is sometimes referred to as the sawtooth function. Its Fourier series doesn't converge at the discontinuity points of f , and actually "overshoots" and produces large peaks around the jumps. This is known as Gibbs's phenomenon https://en.wikipedia.org/wiki/Gibbs_phenomenon.

There are continuous functions f for which the Fourier series, instead of converging at a point x to a value that is different to $f(x)$, actually diverges: but they are harder to come up with. See for instance https://en.wikipedia.org/wiki/Fourier_series#Divergence.